![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > algmulr | Structured version Visualization version GIF version |
Description: The multiplicative operation of a constructed algebra. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 29-Aug-2015.) |
Ref | Expression |
---|---|
algpart.a | ⊢ 𝐴 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉}) |
Ref | Expression |
---|---|
algmulr | ⊢ ( × ∈ 𝑉 → × = (.r‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | algpart.a | . . 3 ⊢ 𝐴 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉}) | |
2 | 1 | algstr 38218 | . 2 ⊢ 𝐴 Struct 〈1, 6〉 |
3 | mulrid 16170 | . 2 ⊢ .r = Slot (.r‘ndx) | |
4 | snsstp3 4482 | . . 3 ⊢ {〈(.r‘ndx), × 〉} ⊆ {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} | |
5 | ssun1 3907 | . . . 4 ⊢ {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ⊆ ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉}) | |
6 | 5, 1 | sseqtr4i 3767 | . . 3 ⊢ {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ⊆ 𝐴 |
7 | 4, 6 | sstri 3741 | . 2 ⊢ {〈(.r‘ndx), × 〉} ⊆ 𝐴 |
8 | 2, 3, 7 | strfv 16080 | 1 ⊢ ( × ∈ 𝑉 → × = (.r‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1620 ∈ wcel 2127 ∪ cun 3701 {csn 4309 {cpr 4311 {ctp 4313 〈cop 4315 ‘cfv 6037 1c1 10100 6c6 11237 ndxcnx 16027 Basecbs 16030 +gcplusg 16114 .rcmulr 16115 Scalarcsca 16117 ·𝑠 cvsca 16118 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1859 ax-4 1874 ax-5 1976 ax-6 2042 ax-7 2078 ax-8 2129 ax-9 2136 ax-10 2156 ax-11 2171 ax-12 2184 ax-13 2379 ax-ext 2728 ax-sep 4921 ax-nul 4929 ax-pow 4980 ax-pr 5043 ax-un 7102 ax-cnex 10155 ax-resscn 10156 ax-1cn 10157 ax-icn 10158 ax-addcl 10159 ax-addrcl 10160 ax-mulcl 10161 ax-mulrcl 10162 ax-mulcom 10163 ax-addass 10164 ax-mulass 10165 ax-distr 10166 ax-i2m1 10167 ax-1ne0 10168 ax-1rid 10169 ax-rnegex 10170 ax-rrecex 10171 ax-cnre 10172 ax-pre-lttri 10173 ax-pre-lttrn 10174 ax-pre-ltadd 10175 ax-pre-mulgt0 10176 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1623 df-ex 1842 df-nf 1847 df-sb 2035 df-eu 2599 df-mo 2600 df-clab 2735 df-cleq 2741 df-clel 2744 df-nfc 2879 df-ne 2921 df-nel 3024 df-ral 3043 df-rex 3044 df-reu 3045 df-rab 3047 df-v 3330 df-sbc 3565 df-csb 3663 df-dif 3706 df-un 3708 df-in 3710 df-ss 3717 df-pss 3719 df-nul 4047 df-if 4219 df-pw 4292 df-sn 4310 df-pr 4312 df-tp 4314 df-op 4316 df-uni 4577 df-int 4616 df-iun 4662 df-br 4793 df-opab 4853 df-mpt 4870 df-tr 4893 df-id 5162 df-eprel 5167 df-po 5175 df-so 5176 df-fr 5213 df-we 5215 df-xp 5260 df-rel 5261 df-cnv 5262 df-co 5263 df-dm 5264 df-rn 5265 df-res 5266 df-ima 5267 df-pred 5829 df-ord 5875 df-on 5876 df-lim 5877 df-suc 5878 df-iota 6000 df-fun 6039 df-fn 6040 df-f 6041 df-f1 6042 df-fo 6043 df-f1o 6044 df-fv 6045 df-riota 6762 df-ov 6804 df-oprab 6805 df-mpt2 6806 df-om 7219 df-1st 7321 df-2nd 7322 df-wrecs 7564 df-recs 7625 df-rdg 7663 df-1o 7717 df-oadd 7721 df-er 7899 df-en 8110 df-dom 8111 df-sdom 8112 df-fin 8113 df-pnf 10239 df-mnf 10240 df-xr 10241 df-ltxr 10242 df-le 10243 df-sub 10431 df-neg 10432 df-nn 11184 df-2 11242 df-3 11243 df-4 11244 df-5 11245 df-6 11246 df-n0 11456 df-z 11541 df-uz 11851 df-fz 12491 df-struct 16032 df-ndx 16033 df-slot 16034 df-base 16036 df-plusg 16127 df-mulr 16128 df-sca 16130 df-vsca 16131 |
This theorem is referenced by: mendmulrfval 38228 |
Copyright terms: Public domain | W3C validator |