![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > alexsubALTlem1 | Structured version Visualization version GIF version |
Description: Lemma for alexsubALT 22052. A compact space has a subbase such that every cover taken from it has a finite subcover. (Contributed by Jeff Hankins, 27-Jan-2010.) |
Ref | Expression |
---|---|
alexsubALT.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
alexsubALTlem1 | ⊢ (𝐽 ∈ Comp → ∃𝑥(𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cmptop 21396 | . . 3 ⊢ (𝐽 ∈ Comp → 𝐽 ∈ Top) | |
2 | fitop 20903 | . . . . 5 ⊢ (𝐽 ∈ Top → (fi‘𝐽) = 𝐽) | |
3 | 2 | fveq2d 6352 | . . . 4 ⊢ (𝐽 ∈ Top → (topGen‘(fi‘𝐽)) = (topGen‘𝐽)) |
4 | tgtop 20975 | . . . 4 ⊢ (𝐽 ∈ Top → (topGen‘𝐽) = 𝐽) | |
5 | 3, 4 | eqtr2d 2791 | . . 3 ⊢ (𝐽 ∈ Top → 𝐽 = (topGen‘(fi‘𝐽))) |
6 | 1, 5 | syl 17 | . 2 ⊢ (𝐽 ∈ Comp → 𝐽 = (topGen‘(fi‘𝐽))) |
7 | selpw 4305 | . . . 4 ⊢ (𝑐 ∈ 𝒫 𝐽 ↔ 𝑐 ⊆ 𝐽) | |
8 | alexsubALT.1 | . . . . . 6 ⊢ 𝑋 = ∪ 𝐽 | |
9 | 8 | cmpcov 21390 | . . . . 5 ⊢ ((𝐽 ∈ Comp ∧ 𝑐 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑐) → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) |
10 | 9 | 3exp 1113 | . . . 4 ⊢ (𝐽 ∈ Comp → (𝑐 ⊆ 𝐽 → (𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑))) |
11 | 7, 10 | syl5bi 232 | . . 3 ⊢ (𝐽 ∈ Comp → (𝑐 ∈ 𝒫 𝐽 → (𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑))) |
12 | 11 | ralrimiv 3099 | . 2 ⊢ (𝐽 ∈ Comp → ∀𝑐 ∈ 𝒫 𝐽(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑)) |
13 | fveq2 6348 | . . . . . 6 ⊢ (𝑥 = 𝐽 → (fi‘𝑥) = (fi‘𝐽)) | |
14 | 13 | fveq2d 6352 | . . . . 5 ⊢ (𝑥 = 𝐽 → (topGen‘(fi‘𝑥)) = (topGen‘(fi‘𝐽))) |
15 | 14 | eqeq2d 2766 | . . . 4 ⊢ (𝑥 = 𝐽 → (𝐽 = (topGen‘(fi‘𝑥)) ↔ 𝐽 = (topGen‘(fi‘𝐽)))) |
16 | pweq 4301 | . . . . 5 ⊢ (𝑥 = 𝐽 → 𝒫 𝑥 = 𝒫 𝐽) | |
17 | 16 | raleqdv 3279 | . . . 4 ⊢ (𝑥 = 𝐽 → (∀𝑐 ∈ 𝒫 𝑥(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ↔ ∀𝑐 ∈ 𝒫 𝐽(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑))) |
18 | 15, 17 | anbi12d 749 | . . 3 ⊢ (𝑥 = 𝐽 → ((𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑)) ↔ (𝐽 = (topGen‘(fi‘𝐽)) ∧ ∀𝑐 ∈ 𝒫 𝐽(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑)))) |
19 | 18 | spcegv 3430 | . 2 ⊢ (𝐽 ∈ Comp → ((𝐽 = (topGen‘(fi‘𝐽)) ∧ ∀𝑐 ∈ 𝒫 𝐽(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑)) → ∃𝑥(𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑)))) |
20 | 6, 12, 19 | mp2and 717 | 1 ⊢ (𝐽 ∈ Comp → ∃𝑥(𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1628 ∃wex 1849 ∈ wcel 2135 ∀wral 3046 ∃wrex 3047 ∩ cin 3710 ⊆ wss 3711 𝒫 cpw 4298 ∪ cuni 4584 ‘cfv 6045 Fincfn 8117 ficfi 8477 topGenctg 16296 Topctop 20896 Compccmp 21387 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1867 ax-4 1882 ax-5 1984 ax-6 2050 ax-7 2086 ax-8 2137 ax-9 2144 ax-10 2164 ax-11 2179 ax-12 2192 ax-13 2387 ax-ext 2736 ax-sep 4929 ax-nul 4937 ax-pow 4988 ax-pr 5051 ax-un 7110 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1631 df-ex 1850 df-nf 1855 df-sb 2043 df-eu 2607 df-mo 2608 df-clab 2743 df-cleq 2749 df-clel 2752 df-nfc 2887 df-ne 2929 df-ral 3051 df-rex 3052 df-reu 3053 df-rab 3055 df-v 3338 df-sbc 3573 df-csb 3671 df-dif 3714 df-un 3716 df-in 3718 df-ss 3725 df-pss 3727 df-nul 4055 df-if 4227 df-pw 4300 df-sn 4318 df-pr 4320 df-tp 4322 df-op 4324 df-uni 4585 df-int 4624 df-iun 4670 df-br 4801 df-opab 4861 df-mpt 4878 df-tr 4901 df-id 5170 df-eprel 5175 df-po 5183 df-so 5184 df-fr 5221 df-we 5223 df-xp 5268 df-rel 5269 df-cnv 5270 df-co 5271 df-dm 5272 df-rn 5273 df-res 5274 df-ima 5275 df-pred 5837 df-ord 5883 df-on 5884 df-lim 5885 df-suc 5886 df-iota 6008 df-fun 6047 df-fn 6048 df-f 6049 df-f1 6050 df-fo 6051 df-f1o 6052 df-fv 6053 df-ov 6812 df-oprab 6813 df-mpt2 6814 df-om 7227 df-wrecs 7572 df-recs 7633 df-rdg 7671 df-1o 7725 df-oadd 7729 df-er 7907 df-en 8118 df-fin 8121 df-fi 8478 df-topgen 16302 df-top 20897 df-cmp 21388 |
This theorem is referenced by: alexsubALT 22052 |
Copyright terms: Public domain | W3C validator |