Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  alephsmo Structured version   Visualization version   GIF version

Theorem alephsmo 8963
 Description: The aleph function is strictly monotone. (Contributed by Mario Carneiro, 15-Mar-2013.)
Assertion
Ref Expression
alephsmo Smo ℵ

Proof of Theorem alephsmo
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssid 3657 . 2 On ⊆ On
2 ordon 7024 . 2 Ord On
3 alephord2i 8938 . . . 4 (𝑥 ∈ On → (𝑦𝑥 → (ℵ‘𝑦) ∈ (ℵ‘𝑥)))
43ralrimiv 2994 . . 3 (𝑥 ∈ On → ∀𝑦𝑥 (ℵ‘𝑦) ∈ (ℵ‘𝑥))
54rgen 2951 . 2 𝑥 ∈ On ∀𝑦𝑥 (ℵ‘𝑦) ∈ (ℵ‘𝑥)
6 alephfnon 8926 . . . 4 ℵ Fn On
7 alephsson 8961 . . . 4 ran ℵ ⊆ On
8 df-f 5930 . . . 4 (ℵ:On⟶On ↔ (ℵ Fn On ∧ ran ℵ ⊆ On))
96, 7, 8mpbir2an 975 . . 3 ℵ:On⟶On
10 issmo2 7491 . . 3 (ℵ:On⟶On → ((On ⊆ On ∧ Ord On ∧ ∀𝑥 ∈ On ∀𝑦𝑥 (ℵ‘𝑦) ∈ (ℵ‘𝑥)) → Smo ℵ))
119, 10ax-mp 5 . 2 ((On ⊆ On ∧ Ord On ∧ ∀𝑥 ∈ On ∀𝑦𝑥 (ℵ‘𝑦) ∈ (ℵ‘𝑥)) → Smo ℵ)
121, 2, 5, 11mp3an 1464 1 Smo ℵ
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ w3a 1054   ∈ wcel 2030  ∀wral 2941   ⊆ wss 3607  ran crn 5144  Ord word 5760  Oncon0 5761   Fn wfn 5921  ⟶wf 5922  ‘cfv 5926  Smo wsmo 7487  ℵcale 8800 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-om 7108  df-wrecs 7452  df-smo 7488  df-recs 7513  df-rdg 7551  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-oi 8456  df-har 8504  df-card 8803  df-aleph 8804 This theorem is referenced by:  alephf1ALT  8964  alephsing  9136
 Copyright terms: Public domain W3C validator