MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alephsing Structured version   Visualization version   GIF version

Theorem alephsing 9083
Description: The cofinality of a limit aleph is the same as the cofinality of its argument, so if (ℵ‘𝐴) < 𝐴, then (ℵ‘𝐴) is singular. Conversely, if (ℵ‘𝐴) is regular (i.e. weakly inaccessible), then (ℵ‘𝐴) = 𝐴, so 𝐴 has to be rather large (see alephfp 8916). Proposition 11.13 of [TakeutiZaring] p. 103. (Contributed by Mario Carneiro, 9-Mar-2013.)
Assertion
Ref Expression
alephsing (Lim 𝐴 → (cf‘(ℵ‘𝐴)) = (cf‘𝐴))

Proof of Theorem alephsing
Dummy variables 𝑓 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 alephfnon 8873 . . . . . . 7 ℵ Fn On
2 fnfun 5976 . . . . . . 7 (ℵ Fn On → Fun ℵ)
31, 2ax-mp 5 . . . . . 6 Fun ℵ
4 simpl 473 . . . . . 6 ((𝐴 ∈ V ∧ Lim 𝐴) → 𝐴 ∈ V)
5 resfunexg 6464 . . . . . 6 ((Fun ℵ ∧ 𝐴 ∈ V) → (ℵ ↾ 𝐴) ∈ V)
63, 4, 5sylancr 694 . . . . 5 ((𝐴 ∈ V ∧ Lim 𝐴) → (ℵ ↾ 𝐴) ∈ V)
7 limelon 5776 . . . . . . . 8 ((𝐴 ∈ V ∧ Lim 𝐴) → 𝐴 ∈ On)
8 onss 6975 . . . . . . . 8 (𝐴 ∈ On → 𝐴 ⊆ On)
97, 8syl 17 . . . . . . 7 ((𝐴 ∈ V ∧ Lim 𝐴) → 𝐴 ⊆ On)
10 fnssres 5992 . . . . . . 7 ((ℵ Fn On ∧ 𝐴 ⊆ On) → (ℵ ↾ 𝐴) Fn 𝐴)
111, 9, 10sylancr 694 . . . . . 6 ((𝐴 ∈ V ∧ Lim 𝐴) → (ℵ ↾ 𝐴) Fn 𝐴)
12 fvres 6194 . . . . . . . . . . 11 (𝑦𝐴 → ((ℵ ↾ 𝐴)‘𝑦) = (ℵ‘𝑦))
1312adantl 482 . . . . . . . . . 10 ((𝐴 ∈ On ∧ 𝑦𝐴) → ((ℵ ↾ 𝐴)‘𝑦) = (ℵ‘𝑦))
14 alephord2i 8885 . . . . . . . . . . 11 (𝐴 ∈ On → (𝑦𝐴 → (ℵ‘𝑦) ∈ (ℵ‘𝐴)))
1514imp 445 . . . . . . . . . 10 ((𝐴 ∈ On ∧ 𝑦𝐴) → (ℵ‘𝑦) ∈ (ℵ‘𝐴))
1613, 15eqeltrd 2699 . . . . . . . . 9 ((𝐴 ∈ On ∧ 𝑦𝐴) → ((ℵ ↾ 𝐴)‘𝑦) ∈ (ℵ‘𝐴))
177, 16sylan 488 . . . . . . . 8 (((𝐴 ∈ V ∧ Lim 𝐴) ∧ 𝑦𝐴) → ((ℵ ↾ 𝐴)‘𝑦) ∈ (ℵ‘𝐴))
1817ralrimiva 2963 . . . . . . 7 ((𝐴 ∈ V ∧ Lim 𝐴) → ∀𝑦𝐴 ((ℵ ↾ 𝐴)‘𝑦) ∈ (ℵ‘𝐴))
19 fnfvrnss 6376 . . . . . . 7 (((ℵ ↾ 𝐴) Fn 𝐴 ∧ ∀𝑦𝐴 ((ℵ ↾ 𝐴)‘𝑦) ∈ (ℵ‘𝐴)) → ran (ℵ ↾ 𝐴) ⊆ (ℵ‘𝐴))
2011, 18, 19syl2anc 692 . . . . . 6 ((𝐴 ∈ V ∧ Lim 𝐴) → ran (ℵ ↾ 𝐴) ⊆ (ℵ‘𝐴))
21 df-f 5880 . . . . . 6 ((ℵ ↾ 𝐴):𝐴⟶(ℵ‘𝐴) ↔ ((ℵ ↾ 𝐴) Fn 𝐴 ∧ ran (ℵ ↾ 𝐴) ⊆ (ℵ‘𝐴)))
2211, 20, 21sylanbrc 697 . . . . 5 ((𝐴 ∈ V ∧ Lim 𝐴) → (ℵ ↾ 𝐴):𝐴⟶(ℵ‘𝐴))
23 alephsmo 8910 . . . . . 6 Smo ℵ
24 fndm 5978 . . . . . . . 8 (ℵ Fn On → dom ℵ = On)
251, 24ax-mp 5 . . . . . . 7 dom ℵ = On
267, 25syl6eleqr 2710 . . . . . 6 ((𝐴 ∈ V ∧ Lim 𝐴) → 𝐴 ∈ dom ℵ)
27 smores 7434 . . . . . 6 ((Smo ℵ ∧ 𝐴 ∈ dom ℵ) → Smo (ℵ ↾ 𝐴))
2823, 26, 27sylancr 694 . . . . 5 ((𝐴 ∈ V ∧ Lim 𝐴) → Smo (ℵ ↾ 𝐴))
29 alephlim 8875 . . . . . . . 8 ((𝐴 ∈ V ∧ Lim 𝐴) → (ℵ‘𝐴) = 𝑦𝐴 (ℵ‘𝑦))
3029eleq2d 2685 . . . . . . 7 ((𝐴 ∈ V ∧ Lim 𝐴) → (𝑥 ∈ (ℵ‘𝐴) ↔ 𝑥 𝑦𝐴 (ℵ‘𝑦)))
31 eliun 4515 . . . . . . . 8 (𝑥 𝑦𝐴 (ℵ‘𝑦) ↔ ∃𝑦𝐴 𝑥 ∈ (ℵ‘𝑦))
32 alephon 8877 . . . . . . . . . 10 (ℵ‘𝑦) ∈ On
3332onelssi 5824 . . . . . . . . 9 (𝑥 ∈ (ℵ‘𝑦) → 𝑥 ⊆ (ℵ‘𝑦))
3433reximi 3008 . . . . . . . 8 (∃𝑦𝐴 𝑥 ∈ (ℵ‘𝑦) → ∃𝑦𝐴 𝑥 ⊆ (ℵ‘𝑦))
3531, 34sylbi 207 . . . . . . 7 (𝑥 𝑦𝐴 (ℵ‘𝑦) → ∃𝑦𝐴 𝑥 ⊆ (ℵ‘𝑦))
3630, 35syl6bi 243 . . . . . 6 ((𝐴 ∈ V ∧ Lim 𝐴) → (𝑥 ∈ (ℵ‘𝐴) → ∃𝑦𝐴 𝑥 ⊆ (ℵ‘𝑦)))
3736ralrimiv 2962 . . . . 5 ((𝐴 ∈ V ∧ Lim 𝐴) → ∀𝑥 ∈ (ℵ‘𝐴)∃𝑦𝐴 𝑥 ⊆ (ℵ‘𝑦))
38 feq1 6013 . . . . . . . 8 (𝑓 = (ℵ ↾ 𝐴) → (𝑓:𝐴⟶(ℵ‘𝐴) ↔ (ℵ ↾ 𝐴):𝐴⟶(ℵ‘𝐴)))
39 smoeq 7432 . . . . . . . 8 (𝑓 = (ℵ ↾ 𝐴) → (Smo 𝑓 ↔ Smo (ℵ ↾ 𝐴)))
40 fveq1 6177 . . . . . . . . . . . 12 (𝑓 = (ℵ ↾ 𝐴) → (𝑓𝑦) = ((ℵ ↾ 𝐴)‘𝑦))
4140, 12sylan9eq 2674 . . . . . . . . . . 11 ((𝑓 = (ℵ ↾ 𝐴) ∧ 𝑦𝐴) → (𝑓𝑦) = (ℵ‘𝑦))
4241sseq2d 3625 . . . . . . . . . 10 ((𝑓 = (ℵ ↾ 𝐴) ∧ 𝑦𝐴) → (𝑥 ⊆ (𝑓𝑦) ↔ 𝑥 ⊆ (ℵ‘𝑦)))
4342rexbidva 3045 . . . . . . . . 9 (𝑓 = (ℵ ↾ 𝐴) → (∃𝑦𝐴 𝑥 ⊆ (𝑓𝑦) ↔ ∃𝑦𝐴 𝑥 ⊆ (ℵ‘𝑦)))
4443ralbidv 2983 . . . . . . . 8 (𝑓 = (ℵ ↾ 𝐴) → (∀𝑥 ∈ (ℵ‘𝐴)∃𝑦𝐴 𝑥 ⊆ (𝑓𝑦) ↔ ∀𝑥 ∈ (ℵ‘𝐴)∃𝑦𝐴 𝑥 ⊆ (ℵ‘𝑦)))
4538, 39, 443anbi123d 1397 . . . . . . 7 (𝑓 = (ℵ ↾ 𝐴) → ((𝑓:𝐴⟶(ℵ‘𝐴) ∧ Smo 𝑓 ∧ ∀𝑥 ∈ (ℵ‘𝐴)∃𝑦𝐴 𝑥 ⊆ (𝑓𝑦)) ↔ ((ℵ ↾ 𝐴):𝐴⟶(ℵ‘𝐴) ∧ Smo (ℵ ↾ 𝐴) ∧ ∀𝑥 ∈ (ℵ‘𝐴)∃𝑦𝐴 𝑥 ⊆ (ℵ‘𝑦))))
4645spcegv 3289 . . . . . 6 ((ℵ ↾ 𝐴) ∈ V → (((ℵ ↾ 𝐴):𝐴⟶(ℵ‘𝐴) ∧ Smo (ℵ ↾ 𝐴) ∧ ∀𝑥 ∈ (ℵ‘𝐴)∃𝑦𝐴 𝑥 ⊆ (ℵ‘𝑦)) → ∃𝑓(𝑓:𝐴⟶(ℵ‘𝐴) ∧ Smo 𝑓 ∧ ∀𝑥 ∈ (ℵ‘𝐴)∃𝑦𝐴 𝑥 ⊆ (𝑓𝑦))))
4746imp 445 . . . . 5 (((ℵ ↾ 𝐴) ∈ V ∧ ((ℵ ↾ 𝐴):𝐴⟶(ℵ‘𝐴) ∧ Smo (ℵ ↾ 𝐴) ∧ ∀𝑥 ∈ (ℵ‘𝐴)∃𝑦𝐴 𝑥 ⊆ (ℵ‘𝑦))) → ∃𝑓(𝑓:𝐴⟶(ℵ‘𝐴) ∧ Smo 𝑓 ∧ ∀𝑥 ∈ (ℵ‘𝐴)∃𝑦𝐴 𝑥 ⊆ (𝑓𝑦)))
486, 22, 28, 37, 47syl13anc 1326 . . . 4 ((𝐴 ∈ V ∧ Lim 𝐴) → ∃𝑓(𝑓:𝐴⟶(ℵ‘𝐴) ∧ Smo 𝑓 ∧ ∀𝑥 ∈ (ℵ‘𝐴)∃𝑦𝐴 𝑥 ⊆ (𝑓𝑦)))
49 alephon 8877 . . . . 5 (ℵ‘𝐴) ∈ On
50 cfcof 9081 . . . . 5 (((ℵ‘𝐴) ∈ On ∧ 𝐴 ∈ On) → (∃𝑓(𝑓:𝐴⟶(ℵ‘𝐴) ∧ Smo 𝑓 ∧ ∀𝑥 ∈ (ℵ‘𝐴)∃𝑦𝐴 𝑥 ⊆ (𝑓𝑦)) → (cf‘(ℵ‘𝐴)) = (cf‘𝐴)))
5149, 7, 50sylancr 694 . . . 4 ((𝐴 ∈ V ∧ Lim 𝐴) → (∃𝑓(𝑓:𝐴⟶(ℵ‘𝐴) ∧ Smo 𝑓 ∧ ∀𝑥 ∈ (ℵ‘𝐴)∃𝑦𝐴 𝑥 ⊆ (𝑓𝑦)) → (cf‘(ℵ‘𝐴)) = (cf‘𝐴)))
5248, 51mpd 15 . . 3 ((𝐴 ∈ V ∧ Lim 𝐴) → (cf‘(ℵ‘𝐴)) = (cf‘𝐴))
5352expcom 451 . 2 (Lim 𝐴 → (𝐴 ∈ V → (cf‘(ℵ‘𝐴)) = (cf‘𝐴)))
54 cf0 9058 . . 3 (cf‘∅) = ∅
55 fvprc 6172 . . . 4 𝐴 ∈ V → (ℵ‘𝐴) = ∅)
5655fveq2d 6182 . . 3 𝐴 ∈ V → (cf‘(ℵ‘𝐴)) = (cf‘∅))
57 fvprc 6172 . . 3 𝐴 ∈ V → (cf‘𝐴) = ∅)
5854, 56, 573eqtr4a 2680 . 2 𝐴 ∈ V → (cf‘(ℵ‘𝐴)) = (cf‘𝐴))
5953, 58pm2.61d1 171 1 (Lim 𝐴 → (cf‘(ℵ‘𝐴)) = (cf‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384  w3a 1036   = wceq 1481  wex 1702  wcel 1988  wral 2909  wrex 2910  Vcvv 3195  wss 3567  c0 3907   ciun 4511  dom cdm 5104  ran crn 5105  cres 5106  Oncon0 5711  Lim wlim 5712  Fun wfun 5870   Fn wfn 5871  wf 5872  cfv 5876  Smo wsmo 7427  cale 8747  cfccf 8748
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-rep 4762  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934  ax-inf2 8523
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-ral 2914  df-rex 2915  df-reu 2916  df-rmo 2917  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-pss 3583  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-tp 4173  df-op 4175  df-uni 4428  df-int 4467  df-iun 4513  df-br 4645  df-opab 4704  df-mpt 4721  df-tr 4744  df-id 5014  df-eprel 5019  df-po 5025  df-so 5026  df-fr 5063  df-se 5064  df-we 5065  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-pred 5668  df-ord 5714  df-on 5715  df-lim 5716  df-suc 5717  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-fv 5884  df-isom 5885  df-riota 6596  df-ov 6638  df-oprab 6639  df-mpt2 6640  df-om 7051  df-1st 7153  df-2nd 7154  df-wrecs 7392  df-smo 7428  df-recs 7453  df-rdg 7491  df-er 7727  df-map 7844  df-en 7941  df-dom 7942  df-sdom 7943  df-fin 7944  df-oi 8400  df-har 8448  df-card 8750  df-aleph 8751  df-cf 8752  df-acn 8753
This theorem is referenced by:  alephom  9392  winafp  9504
  Copyright terms: Public domain W3C validator