MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alephprc Structured version   Visualization version   GIF version

Theorem alephprc 8960
Description: The class of all transfinite cardinal numbers (the range of the aleph function) is a proper class. Proposition 10.26 of [TakeutiZaring] p. 90. (Contributed by NM, 11-Nov-2003.)
Assertion
Ref Expression
alephprc ¬ ran ℵ ∈ V

Proof of Theorem alephprc
StepHypRef Expression
1 cardprc 8844 . . . 4 {𝑥 ∣ (card‘𝑥) = 𝑥} ∉ V
21neli 2928 . . 3 ¬ {𝑥 ∣ (card‘𝑥) = 𝑥} ∈ V
3 cardnum 8955 . . . 4 {𝑥 ∣ (card‘𝑥) = 𝑥} = (ω ∪ ran ℵ)
43eleq1i 2721 . . 3 ({𝑥 ∣ (card‘𝑥) = 𝑥} ∈ V ↔ (ω ∪ ran ℵ) ∈ V)
52, 4mtbi 311 . 2 ¬ (ω ∪ ran ℵ) ∈ V
6 omex 8578 . . 3 ω ∈ V
7 unexg 7001 . . 3 ((ω ∈ V ∧ ran ℵ ∈ V) → (ω ∪ ran ℵ) ∈ V)
86, 7mpan 706 . 2 (ran ℵ ∈ V → (ω ∪ ran ℵ) ∈ V)
95, 8mto 188 1 ¬ ran ℵ ∈ V
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1523  wcel 2030  {cab 2637  Vcvv 3231  cun 3605  ran crn 5144  cfv 5926  ωcom 7107  cardccrd 8799  cale 8800
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-om 7108  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-oi 8456  df-har 8504  df-card 8803  df-aleph 8804
This theorem is referenced by:  unialeph  8962
  Copyright terms: Public domain W3C validator