![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > alephmul | Structured version Visualization version GIF version |
Description: The product of two alephs is their maximum. Equation 6.1 of [Jech] p. 42. (Contributed by NM, 29-Sep-2004.) (Revised by Mario Carneiro, 30-Apr-2015.) |
Ref | Expression |
---|---|
alephmul | ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((ℵ‘𝐴) × (ℵ‘𝐵)) ≈ ((ℵ‘𝐴) ∪ (ℵ‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alephgeom 9104 | . . . 4 ⊢ (𝐴 ∈ On ↔ ω ⊆ (ℵ‘𝐴)) | |
2 | fvex 6342 | . . . . 5 ⊢ (ℵ‘𝐴) ∈ V | |
3 | ssdomg 8154 | . . . . 5 ⊢ ((ℵ‘𝐴) ∈ V → (ω ⊆ (ℵ‘𝐴) → ω ≼ (ℵ‘𝐴))) | |
4 | 2, 3 | ax-mp 5 | . . . 4 ⊢ (ω ⊆ (ℵ‘𝐴) → ω ≼ (ℵ‘𝐴)) |
5 | 1, 4 | sylbi 207 | . . 3 ⊢ (𝐴 ∈ On → ω ≼ (ℵ‘𝐴)) |
6 | alephon 9091 | . . . 4 ⊢ (ℵ‘𝐴) ∈ On | |
7 | onenon 8974 | . . . 4 ⊢ ((ℵ‘𝐴) ∈ On → (ℵ‘𝐴) ∈ dom card) | |
8 | 6, 7 | ax-mp 5 | . . 3 ⊢ (ℵ‘𝐴) ∈ dom card |
9 | 5, 8 | jctil 503 | . 2 ⊢ (𝐴 ∈ On → ((ℵ‘𝐴) ∈ dom card ∧ ω ≼ (ℵ‘𝐴))) |
10 | alephgeom 9104 | . . . 4 ⊢ (𝐵 ∈ On ↔ ω ⊆ (ℵ‘𝐵)) | |
11 | fvex 6342 | . . . . . 6 ⊢ (ℵ‘𝐵) ∈ V | |
12 | ssdomg 8154 | . . . . . 6 ⊢ ((ℵ‘𝐵) ∈ V → (ω ⊆ (ℵ‘𝐵) → ω ≼ (ℵ‘𝐵))) | |
13 | 11, 12 | ax-mp 5 | . . . . 5 ⊢ (ω ⊆ (ℵ‘𝐵) → ω ≼ (ℵ‘𝐵)) |
14 | infn0 8377 | . . . . 5 ⊢ (ω ≼ (ℵ‘𝐵) → (ℵ‘𝐵) ≠ ∅) | |
15 | 13, 14 | syl 17 | . . . 4 ⊢ (ω ⊆ (ℵ‘𝐵) → (ℵ‘𝐵) ≠ ∅) |
16 | 10, 15 | sylbi 207 | . . 3 ⊢ (𝐵 ∈ On → (ℵ‘𝐵) ≠ ∅) |
17 | alephon 9091 | . . . 4 ⊢ (ℵ‘𝐵) ∈ On | |
18 | onenon 8974 | . . . 4 ⊢ ((ℵ‘𝐵) ∈ On → (ℵ‘𝐵) ∈ dom card) | |
19 | 17, 18 | ax-mp 5 | . . 3 ⊢ (ℵ‘𝐵) ∈ dom card |
20 | 16, 19 | jctil 503 | . 2 ⊢ (𝐵 ∈ On → ((ℵ‘𝐵) ∈ dom card ∧ (ℵ‘𝐵) ≠ ∅)) |
21 | infxp 9238 | . 2 ⊢ ((((ℵ‘𝐴) ∈ dom card ∧ ω ≼ (ℵ‘𝐴)) ∧ ((ℵ‘𝐵) ∈ dom card ∧ (ℵ‘𝐵) ≠ ∅)) → ((ℵ‘𝐴) × (ℵ‘𝐵)) ≈ ((ℵ‘𝐴) ∪ (ℵ‘𝐵))) | |
22 | 9, 20, 21 | syl2an 575 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((ℵ‘𝐴) × (ℵ‘𝐵)) ≈ ((ℵ‘𝐴) ∪ (ℵ‘𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 ∈ wcel 2144 ≠ wne 2942 Vcvv 3349 ∪ cun 3719 ⊆ wss 3721 ∅c0 4061 class class class wbr 4784 × cxp 5247 dom cdm 5249 Oncon0 5866 ‘cfv 6031 ωcom 7211 ≈ cen 8105 ≼ cdom 8106 cardccrd 8960 ℵcale 8961 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-8 2146 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-rep 4902 ax-sep 4912 ax-nul 4920 ax-pow 4971 ax-pr 5034 ax-un 7095 ax-inf2 8701 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3or 1071 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ne 2943 df-ral 3065 df-rex 3066 df-reu 3067 df-rmo 3068 df-rab 3069 df-v 3351 df-sbc 3586 df-csb 3681 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-pss 3737 df-nul 4062 df-if 4224 df-pw 4297 df-sn 4315 df-pr 4317 df-tp 4319 df-op 4321 df-uni 4573 df-int 4610 df-iun 4654 df-br 4785 df-opab 4845 df-mpt 4862 df-tr 4885 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-se 5209 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-isom 6040 df-riota 6753 df-ov 6795 df-oprab 6796 df-mpt2 6797 df-om 7212 df-1st 7314 df-2nd 7315 df-wrecs 7558 df-recs 7620 df-rdg 7658 df-1o 7712 df-2o 7713 df-oadd 7716 df-er 7895 df-en 8109 df-dom 8110 df-sdom 8111 df-fin 8112 df-oi 8570 df-har 8618 df-card 8964 df-aleph 8965 df-cda 9191 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |