MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alephlim Structured version   Visualization version   GIF version

Theorem alephlim 8875
Description: Value of the aleph function at a limit ordinal. Definition 12(iii) of [Suppes] p. 91. (Contributed by NM, 21-Oct-2003.) (Revised by Mario Carneiro, 13-Sep-2013.)
Assertion
Ref Expression
alephlim ((𝐴𝑉 ∧ Lim 𝐴) → (ℵ‘𝐴) = 𝑥𝐴 (ℵ‘𝑥))
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem alephlim
StepHypRef Expression
1 rdglim2a 7514 . 2 ((𝐴𝑉 ∧ Lim 𝐴) → (rec(har, ω)‘𝐴) = 𝑥𝐴 (rec(har, ω)‘𝑥))
2 df-aleph 8751 . . 3 ℵ = rec(har, ω)
32fveq1i 6179 . 2 (ℵ‘𝐴) = (rec(har, ω)‘𝐴)
42fveq1i 6179 . . . 4 (ℵ‘𝑥) = (rec(har, ω)‘𝑥)
54a1i 11 . . 3 (𝑥𝐴 → (ℵ‘𝑥) = (rec(har, ω)‘𝑥))
65iuneq2i 4530 . 2 𝑥𝐴 (ℵ‘𝑥) = 𝑥𝐴 (rec(har, ω)‘𝑥)
71, 3, 63eqtr4g 2679 1 ((𝐴𝑉 ∧ Lim 𝐴) → (ℵ‘𝐴) = 𝑥𝐴 (ℵ‘𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1481  wcel 1988   ciun 4511  Lim wlim 5712  cfv 5876  ωcom 7050  reccrdg 7490  harchar 8446  cale 8747
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-rep 4762  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-ral 2914  df-rex 2915  df-reu 2916  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-pss 3583  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-tp 4173  df-op 4175  df-uni 4428  df-iun 4513  df-br 4645  df-opab 4704  df-mpt 4721  df-tr 4744  df-id 5014  df-eprel 5019  df-po 5025  df-so 5026  df-fr 5063  df-we 5065  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-pred 5668  df-ord 5714  df-on 5715  df-lim 5716  df-suc 5717  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-fv 5884  df-wrecs 7392  df-recs 7453  df-rdg 7491  df-aleph 8751
This theorem is referenced by:  alephon  8877  alephcard  8878  alephordi  8882  cardaleph  8897  alephsing  9083  pwcfsdom  9390
  Copyright terms: Public domain W3C validator