![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > alephle | Structured version Visualization version GIF version |
Description: The argument of the aleph function is less than or equal to its value. Exercise 2 of [TakeutiZaring] p. 91. (Later, in alephfp2 9143, we will that equality can sometimes hold.) (Contributed by NM, 9-Nov-2003.) (Proof shortened by Mario Carneiro, 22-Feb-2013.) |
Ref | Expression |
---|---|
alephle | ⊢ (𝐴 ∈ On → 𝐴 ⊆ (ℵ‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . . 3 ⊢ (𝑥 = 𝑦 → 𝑥 = 𝑦) | |
2 | fveq2 6354 | . . 3 ⊢ (𝑥 = 𝑦 → (ℵ‘𝑥) = (ℵ‘𝑦)) | |
3 | 1, 2 | sseq12d 3776 | . 2 ⊢ (𝑥 = 𝑦 → (𝑥 ⊆ (ℵ‘𝑥) ↔ 𝑦 ⊆ (ℵ‘𝑦))) |
4 | id 22 | . . 3 ⊢ (𝑥 = 𝐴 → 𝑥 = 𝐴) | |
5 | fveq2 6354 | . . 3 ⊢ (𝑥 = 𝐴 → (ℵ‘𝑥) = (ℵ‘𝐴)) | |
6 | 4, 5 | sseq12d 3776 | . 2 ⊢ (𝑥 = 𝐴 → (𝑥 ⊆ (ℵ‘𝑥) ↔ 𝐴 ⊆ (ℵ‘𝐴))) |
7 | alephord2i 9111 | . . . . . 6 ⊢ (𝑥 ∈ On → (𝑦 ∈ 𝑥 → (ℵ‘𝑦) ∈ (ℵ‘𝑥))) | |
8 | 7 | imp 444 | . . . . 5 ⊢ ((𝑥 ∈ On ∧ 𝑦 ∈ 𝑥) → (ℵ‘𝑦) ∈ (ℵ‘𝑥)) |
9 | onelon 5910 | . . . . . 6 ⊢ ((𝑥 ∈ On ∧ 𝑦 ∈ 𝑥) → 𝑦 ∈ On) | |
10 | alephon 9103 | . . . . . 6 ⊢ (ℵ‘𝑥) ∈ On | |
11 | ontr2 5934 | . . . . . 6 ⊢ ((𝑦 ∈ On ∧ (ℵ‘𝑥) ∈ On) → ((𝑦 ⊆ (ℵ‘𝑦) ∧ (ℵ‘𝑦) ∈ (ℵ‘𝑥)) → 𝑦 ∈ (ℵ‘𝑥))) | |
12 | 9, 10, 11 | sylancl 697 | . . . . 5 ⊢ ((𝑥 ∈ On ∧ 𝑦 ∈ 𝑥) → ((𝑦 ⊆ (ℵ‘𝑦) ∧ (ℵ‘𝑦) ∈ (ℵ‘𝑥)) → 𝑦 ∈ (ℵ‘𝑥))) |
13 | 8, 12 | mpan2d 712 | . . . 4 ⊢ ((𝑥 ∈ On ∧ 𝑦 ∈ 𝑥) → (𝑦 ⊆ (ℵ‘𝑦) → 𝑦 ∈ (ℵ‘𝑥))) |
14 | 13 | ralimdva 3101 | . . 3 ⊢ (𝑥 ∈ On → (∀𝑦 ∈ 𝑥 𝑦 ⊆ (ℵ‘𝑦) → ∀𝑦 ∈ 𝑥 𝑦 ∈ (ℵ‘𝑥))) |
15 | 10 | onirri 5996 | . . . . 5 ⊢ ¬ (ℵ‘𝑥) ∈ (ℵ‘𝑥) |
16 | eleq1 2828 | . . . . . 6 ⊢ (𝑦 = (ℵ‘𝑥) → (𝑦 ∈ (ℵ‘𝑥) ↔ (ℵ‘𝑥) ∈ (ℵ‘𝑥))) | |
17 | 16 | rspccv 3447 | . . . . 5 ⊢ (∀𝑦 ∈ 𝑥 𝑦 ∈ (ℵ‘𝑥) → ((ℵ‘𝑥) ∈ 𝑥 → (ℵ‘𝑥) ∈ (ℵ‘𝑥))) |
18 | 15, 17 | mtoi 190 | . . . 4 ⊢ (∀𝑦 ∈ 𝑥 𝑦 ∈ (ℵ‘𝑥) → ¬ (ℵ‘𝑥) ∈ 𝑥) |
19 | ontri1 5919 | . . . . 5 ⊢ ((𝑥 ∈ On ∧ (ℵ‘𝑥) ∈ On) → (𝑥 ⊆ (ℵ‘𝑥) ↔ ¬ (ℵ‘𝑥) ∈ 𝑥)) | |
20 | 10, 19 | mpan2 709 | . . . 4 ⊢ (𝑥 ∈ On → (𝑥 ⊆ (ℵ‘𝑥) ↔ ¬ (ℵ‘𝑥) ∈ 𝑥)) |
21 | 18, 20 | syl5ibr 236 | . . 3 ⊢ (𝑥 ∈ On → (∀𝑦 ∈ 𝑥 𝑦 ∈ (ℵ‘𝑥) → 𝑥 ⊆ (ℵ‘𝑥))) |
22 | 14, 21 | syld 47 | . 2 ⊢ (𝑥 ∈ On → (∀𝑦 ∈ 𝑥 𝑦 ⊆ (ℵ‘𝑦) → 𝑥 ⊆ (ℵ‘𝑥))) |
23 | 3, 6, 22 | tfis3 7224 | 1 ⊢ (𝐴 ∈ On → 𝐴 ⊆ (ℵ‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1632 ∈ wcel 2140 ∀wral 3051 ⊆ wss 3716 Oncon0 5885 ‘cfv 6050 ℵcale 8973 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1989 ax-6 2055 ax-7 2091 ax-8 2142 ax-9 2149 ax-10 2169 ax-11 2184 ax-12 2197 ax-13 2392 ax-ext 2741 ax-rep 4924 ax-sep 4934 ax-nul 4942 ax-pow 4993 ax-pr 5056 ax-un 7116 ax-inf2 8714 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2048 df-eu 2612 df-mo 2613 df-clab 2748 df-cleq 2754 df-clel 2757 df-nfc 2892 df-ne 2934 df-ral 3056 df-rex 3057 df-reu 3058 df-rmo 3059 df-rab 3060 df-v 3343 df-sbc 3578 df-csb 3676 df-dif 3719 df-un 3721 df-in 3723 df-ss 3730 df-pss 3732 df-nul 4060 df-if 4232 df-pw 4305 df-sn 4323 df-pr 4325 df-tp 4327 df-op 4329 df-uni 4590 df-int 4629 df-iun 4675 df-br 4806 df-opab 4866 df-mpt 4883 df-tr 4906 df-id 5175 df-eprel 5180 df-po 5188 df-so 5189 df-fr 5226 df-se 5227 df-we 5228 df-xp 5273 df-rel 5274 df-cnv 5275 df-co 5276 df-dm 5277 df-rn 5278 df-res 5279 df-ima 5280 df-pred 5842 df-ord 5888 df-on 5889 df-lim 5890 df-suc 5891 df-iota 6013 df-fun 6052 df-fn 6053 df-f 6054 df-f1 6055 df-fo 6056 df-f1o 6057 df-fv 6058 df-isom 6059 df-riota 6776 df-om 7233 df-wrecs 7578 df-recs 7639 df-rdg 7677 df-er 7914 df-en 8125 df-dom 8126 df-sdom 8127 df-fin 8128 df-oi 8583 df-har 8631 df-card 8976 df-aleph 8977 |
This theorem is referenced by: cardaleph 9123 alephfp 9142 winafp 9732 |
Copyright terms: Public domain | W3C validator |