Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  alephfp2 Structured version   Visualization version   GIF version

Theorem alephfp2 9131
 Description: The aleph function has at least one fixed point. Proposition 11.18 of [TakeutiZaring] p. 104. See alephfp 9130 for an actual example of a fixed point. Compare the inequality alephle 9110 that holds in general. Note that if 𝑥 is a fixed point, then ℵ‘ℵ‘ℵ‘... ℵ‘𝑥 = 𝑥. (Contributed by NM, 6-Nov-2004.) (Revised by Mario Carneiro, 15-May-2015.)
Assertion
Ref Expression
alephfp2 𝑥 ∈ On (ℵ‘𝑥) = 𝑥

Proof of Theorem alephfp2
StepHypRef Expression
1 alephsson 9122 . . 3 ran ℵ ⊆ On
2 eqid 2770 . . . 4 (rec(ℵ, ω) ↾ ω) = (rec(ℵ, ω) ↾ ω)
32alephfplem4 9129 . . 3 ((rec(ℵ, ω) ↾ ω) “ ω) ∈ ran ℵ
41, 3sselii 3747 . 2 ((rec(ℵ, ω) ↾ ω) “ ω) ∈ On
52alephfp 9130 . 2 (ℵ‘ ((rec(ℵ, ω) ↾ ω) “ ω)) = ((rec(ℵ, ω) ↾ ω) “ ω)
6 fveq2 6332 . . . 4 (𝑥 = ((rec(ℵ, ω) ↾ ω) “ ω) → (ℵ‘𝑥) = (ℵ‘ ((rec(ℵ, ω) ↾ ω) “ ω)))
7 id 22 . . . 4 (𝑥 = ((rec(ℵ, ω) ↾ ω) “ ω) → 𝑥 = ((rec(ℵ, ω) ↾ ω) “ ω))
86, 7eqeq12d 2785 . . 3 (𝑥 = ((rec(ℵ, ω) ↾ ω) “ ω) → ((ℵ‘𝑥) = 𝑥 ↔ (ℵ‘ ((rec(ℵ, ω) ↾ ω) “ ω)) = ((rec(ℵ, ω) ↾ ω) “ ω)))
98rspcev 3458 . 2 (( ((rec(ℵ, ω) ↾ ω) “ ω) ∈ On ∧ (ℵ‘ ((rec(ℵ, ω) ↾ ω) “ ω)) = ((rec(ℵ, ω) ↾ ω) “ ω)) → ∃𝑥 ∈ On (ℵ‘𝑥) = 𝑥)
104, 5, 9mp2an 664 1 𝑥 ∈ On (ℵ‘𝑥) = 𝑥
 Colors of variables: wff setvar class Syntax hints:   = wceq 1630   ∈ wcel 2144  ∃wrex 3061  ∪ cuni 4572  ran crn 5250   ↾ cres 5251   “ cima 5252  Oncon0 5866  ‘cfv 6031  ωcom 7211  reccrdg 7657  ℵcale 8961 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-rep 4902  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095  ax-inf2 8701 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1071  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-ral 3065  df-rex 3066  df-reu 3067  df-rmo 3068  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-pss 3737  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-tp 4319  df-op 4321  df-uni 4573  df-int 4610  df-iun 4654  df-br 4785  df-opab 4845  df-mpt 4862  df-tr 4885  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-se 5209  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-isom 6040  df-riota 6753  df-om 7212  df-wrecs 7558  df-recs 7620  df-rdg 7658  df-er 7895  df-en 8109  df-dom 8110  df-sdom 8111  df-fin 8112  df-oi 8570  df-har 8618  df-card 8964  df-aleph 8965 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator