![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > alephfnon | Structured version Visualization version GIF version |
Description: The aleph function is a function on the class of ordinal numbers. (Contributed by NM, 21-Oct-2003.) (Revised by Mario Carneiro, 13-Sep-2013.) |
Ref | Expression |
---|---|
alephfnon | ⊢ ℵ Fn On |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rdgfnon 7667 | . 2 ⊢ rec(har, ω) Fn On | |
2 | df-aleph 8966 | . . 3 ⊢ ℵ = rec(har, ω) | |
3 | 2 | fneq1i 6125 | . 2 ⊢ (ℵ Fn On ↔ rec(har, ω) Fn On) |
4 | 1, 3 | mpbir 221 | 1 ⊢ ℵ Fn On |
Colors of variables: wff setvar class |
Syntax hints: Oncon0 5866 Fn wfn 6026 ωcom 7212 reccrdg 7658 harchar 8617 ℵcale 8962 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4904 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4226 df-sn 4317 df-pr 4319 df-tp 4321 df-op 4323 df-uni 4575 df-iun 4656 df-br 4787 df-opab 4847 df-mpt 4864 df-tr 4887 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-wrecs 7559 df-recs 7621 df-rdg 7659 df-aleph 8966 |
This theorem is referenced by: alephon 9092 alephcard 9093 alephnbtwn 9094 alephgeom 9105 alephf1 9108 infenaleph 9114 isinfcard 9115 alephiso 9121 alephsmo 9125 alephf1ALT 9126 alephfplem1 9127 alephfplem3 9129 alephsing 9300 alephadd 9601 alephreg 9606 pwcfsdom 9607 cfpwsdom 9608 gch2 9699 gch3 9700 |
Copyright terms: Public domain | W3C validator |