![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > alephf1 | Structured version Visualization version GIF version |
Description: The aleph function is a one-to-one mapping from the ordinals to the infinite cardinals. See also alephf1ALT 9039. (Contributed by Mario Carneiro, 2-Feb-2013.) |
Ref | Expression |
---|---|
alephf1 | ⊢ ℵ:On–1-1→On |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alephfnon 9001 | . . 3 ⊢ ℵ Fn On | |
2 | alephon 9005 | . . . 4 ⊢ (ℵ‘𝑥) ∈ On | |
3 | 2 | rgenw 3026 | . . 3 ⊢ ∀𝑥 ∈ On (ℵ‘𝑥) ∈ On |
4 | ffnfv 6503 | . . 3 ⊢ (ℵ:On⟶On ↔ (ℵ Fn On ∧ ∀𝑥 ∈ On (ℵ‘𝑥) ∈ On)) | |
5 | 1, 3, 4 | mpbir2an 993 | . 2 ⊢ ℵ:On⟶On |
6 | aleph11 9020 | . . . 4 ⊢ ((𝑥 ∈ On ∧ 𝑦 ∈ On) → ((ℵ‘𝑥) = (ℵ‘𝑦) ↔ 𝑥 = 𝑦)) | |
7 | 6 | biimpd 219 | . . 3 ⊢ ((𝑥 ∈ On ∧ 𝑦 ∈ On) → ((ℵ‘𝑥) = (ℵ‘𝑦) → 𝑥 = 𝑦)) |
8 | 7 | rgen2a 3079 | . 2 ⊢ ∀𝑥 ∈ On ∀𝑦 ∈ On ((ℵ‘𝑥) = (ℵ‘𝑦) → 𝑥 = 𝑦) |
9 | dff13 6627 | . 2 ⊢ (ℵ:On–1-1→On ↔ (ℵ:On⟶On ∧ ∀𝑥 ∈ On ∀𝑦 ∈ On ((ℵ‘𝑥) = (ℵ‘𝑦) → 𝑥 = 𝑦))) | |
10 | 5, 8, 9 | mpbir2an 993 | 1 ⊢ ℵ:On–1-1→On |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1596 ∈ wcel 2103 ∀wral 3014 Oncon0 5836 Fn wfn 5996 ⟶wf 5997 –1-1→wf1 5998 ‘cfv 6001 ℵcale 8875 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1835 ax-4 1850 ax-5 1952 ax-6 2018 ax-7 2054 ax-8 2105 ax-9 2112 ax-10 2132 ax-11 2147 ax-12 2160 ax-13 2355 ax-ext 2704 ax-rep 4879 ax-sep 4889 ax-nul 4897 ax-pow 4948 ax-pr 5011 ax-un 7066 ax-inf2 8651 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1599 df-ex 1818 df-nf 1823 df-sb 2011 df-eu 2575 df-mo 2576 df-clab 2711 df-cleq 2717 df-clel 2720 df-nfc 2855 df-ne 2897 df-ral 3019 df-rex 3020 df-reu 3021 df-rmo 3022 df-rab 3023 df-v 3306 df-sbc 3542 df-csb 3640 df-dif 3683 df-un 3685 df-in 3687 df-ss 3694 df-pss 3696 df-nul 4024 df-if 4195 df-pw 4268 df-sn 4286 df-pr 4288 df-tp 4290 df-op 4292 df-uni 4545 df-int 4584 df-iun 4630 df-br 4761 df-opab 4821 df-mpt 4838 df-tr 4861 df-id 5128 df-eprel 5133 df-po 5139 df-so 5140 df-fr 5177 df-se 5178 df-we 5179 df-xp 5224 df-rel 5225 df-cnv 5226 df-co 5227 df-dm 5228 df-rn 5229 df-res 5230 df-ima 5231 df-pred 5793 df-ord 5839 df-on 5840 df-lim 5841 df-suc 5842 df-iota 5964 df-fun 6003 df-fn 6004 df-f 6005 df-f1 6006 df-fo 6007 df-f1o 6008 df-fv 6009 df-isom 6010 df-riota 6726 df-om 7183 df-wrecs 7527 df-recs 7588 df-rdg 7626 df-er 7862 df-en 8073 df-dom 8074 df-sdom 8075 df-fin 8076 df-oi 8531 df-har 8579 df-card 8878 df-aleph 8879 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |