![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > aleph1 | Structured version Visualization version GIF version |
Description: The set exponentiation of 2 to the aleph-zero has cardinality of at least aleph-one. (If we were to assume the Continuum Hypothesis, their cardinalities would be the same.) (Contributed by NM, 7-Jul-2004.) |
Ref | Expression |
---|---|
aleph1 | ⊢ (ℵ‘1𝑜) ≼ (2𝑜 ↑𝑚 (ℵ‘∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-1o 7717 | . . 3 ⊢ 1𝑜 = suc ∅ | |
2 | 1 | fveq2i 6336 | . 2 ⊢ (ℵ‘1𝑜) = (ℵ‘suc ∅) |
3 | alephsucpw 9598 | . . 3 ⊢ (ℵ‘suc ∅) ≼ 𝒫 (ℵ‘∅) | |
4 | fvex 6344 | . . . . 5 ⊢ (ℵ‘∅) ∈ V | |
5 | 4 | pw2en 8227 | . . . 4 ⊢ 𝒫 (ℵ‘∅) ≈ (2𝑜 ↑𝑚 (ℵ‘∅)) |
6 | domen2 8263 | . . . 4 ⊢ (𝒫 (ℵ‘∅) ≈ (2𝑜 ↑𝑚 (ℵ‘∅)) → ((ℵ‘suc ∅) ≼ 𝒫 (ℵ‘∅) ↔ (ℵ‘suc ∅) ≼ (2𝑜 ↑𝑚 (ℵ‘∅)))) | |
7 | 5, 6 | ax-mp 5 | . . 3 ⊢ ((ℵ‘suc ∅) ≼ 𝒫 (ℵ‘∅) ↔ (ℵ‘suc ∅) ≼ (2𝑜 ↑𝑚 (ℵ‘∅))) |
8 | 3, 7 | mpbi 220 | . 2 ⊢ (ℵ‘suc ∅) ≼ (2𝑜 ↑𝑚 (ℵ‘∅)) |
9 | 2, 8 | eqbrtri 4808 | 1 ⊢ (ℵ‘1𝑜) ≼ (2𝑜 ↑𝑚 (ℵ‘∅)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∅c0 4063 𝒫 cpw 4298 class class class wbr 4787 suc csuc 5867 ‘cfv 6030 (class class class)co 6796 1𝑜c1o 7710 2𝑜c2o 7711 ↑𝑚 cmap 8013 ≈ cen 8110 ≼ cdom 8111 ℵcale 8966 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4905 ax-sep 4916 ax-nul 4924 ax-pow 4975 ax-pr 5035 ax-un 7100 ax-inf2 8706 ax-ac2 9491 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4227 df-pw 4300 df-sn 4318 df-pr 4320 df-tp 4322 df-op 4324 df-uni 4576 df-int 4613 df-iun 4657 df-br 4788 df-opab 4848 df-mpt 4865 df-tr 4888 df-id 5158 df-eprel 5163 df-po 5171 df-so 5172 df-fr 5209 df-se 5210 df-we 5211 df-xp 5256 df-rel 5257 df-cnv 5258 df-co 5259 df-dm 5260 df-rn 5261 df-res 5262 df-ima 5263 df-pred 5822 df-ord 5868 df-on 5869 df-lim 5870 df-suc 5871 df-iota 5993 df-fun 6032 df-fn 6033 df-f 6034 df-f1 6035 df-fo 6036 df-f1o 6037 df-fv 6038 df-isom 6039 df-riota 6757 df-ov 6799 df-oprab 6800 df-mpt2 6801 df-om 7217 df-wrecs 7563 df-recs 7625 df-rdg 7663 df-1o 7717 df-2o 7718 df-er 7900 df-map 8015 df-en 8114 df-dom 8115 df-sdom 8116 df-fin 8117 df-oi 8575 df-har 8623 df-card 8969 df-aleph 8970 df-ac 9143 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |