Users' Mathboxes Mathbox for Andrew Salmon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  albitr Structured version   Visualization version   GIF version

Theorem albitr 39062
Description: Theorem *10.301 in [WhiteheadRussell] p. 151. (Contributed by Andrew Salmon, 24-May-2011.)
Assertion
Ref Expression
albitr ((∀𝑥(𝜑𝜓) ∧ ∀𝑥(𝜓𝜒)) → ∀𝑥(𝜑𝜒))

Proof of Theorem albitr
StepHypRef Expression
1 bitr 747 . 2 (((𝜑𝜓) ∧ (𝜓𝜒)) → (𝜑𝜒))
21alanimi 1891 1 ((∀𝑥(𝜑𝜓) ∧ ∀𝑥(𝜓𝜒)) → ∀𝑥(𝜑𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  wal 1628
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884
This theorem depends on definitions:  df-bi 197  df-an 385
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator