![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > albid | Structured version Visualization version GIF version |
Description: Formula-building rule for universal quantifier (deduction rule). (Contributed by Mario Carneiro, 24-Sep-2016.) |
Ref | Expression |
---|---|
albid.1 | ⊢ Ⅎ𝑥𝜑 |
albid.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
albid | ⊢ (𝜑 → (∀𝑥𝜓 ↔ ∀𝑥𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | albid.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
2 | 1 | nf5ri 2103 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) |
3 | albid.2 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
4 | 2, 3 | albidh 1833 | 1 ⊢ (𝜑 → (∀𝑥𝜓 ↔ ∀𝑥𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∀wal 1521 Ⅎwnf 1748 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-12 2087 |
This theorem depends on definitions: df-bi 197 df-ex 1745 df-nf 1750 |
This theorem is referenced by: nfbidf 2130 axc15 2339 dral2 2355 dral1 2356 sbal1 2488 sbal2 2489 eubid 2516 ralbida 3011 raleqf 3164 intab 4539 fin23lem32 9204 axrepndlem1 9452 axrepndlem2 9453 axrepnd 9454 axunnd 9456 axpowndlem2 9458 axpowndlem4 9460 axregndlem2 9463 axinfndlem1 9465 axinfnd 9466 axacndlem4 9470 axacndlem5 9471 axacnd 9472 funcnvmptOLD 29595 iota5f 31732 bj-dral1v 32873 wl-equsald 33455 wl-sbnf1 33466 wl-2sb6d 33471 wl-sbalnae 33475 wl-mo2df 33482 wl-eudf 33484 wl-ax11-lem6 33497 wl-ax11-lem8 33499 ax12eq 34545 ax12el 34546 ax12v2-o 34553 |
Copyright terms: Public domain | W3C validator |