MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ala1 Structured version   Visualization version   GIF version

Theorem ala1 1889
Description: Add an antecedent in a universally quantified formula. (Contributed by BJ, 6-Oct-2018.)
Assertion
Ref Expression
ala1 (∀𝑥𝜑 → ∀𝑥(𝜓𝜑))

Proof of Theorem ala1
StepHypRef Expression
1 ax-1 6 . 2 (𝜑 → (𝜓𝜑))
21alimi 1887 1 (∀𝑥𝜑 → ∀𝑥(𝜓𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1629
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-gen 1870  ax-4 1885
This theorem is referenced by:  19.38  1914  nfimdOLDOLD  1975  ax12dgen  2166  ax12  2460  stdpc4  2499  alral  3077  hbimtg  32048  bj-axdd2  32913  bj-alsb  32963  bj-ax12v3ALT  33013  bj-equsal1t  33144
  Copyright terms: Public domain W3C validator