![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > al2imi | Structured version Visualization version GIF version |
Description: Inference quantifying antecedent, nested antecedent, and consequent. (Contributed by NM, 10-Jan-1993.) |
Ref | Expression |
---|---|
al2imi.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
al2imi | ⊢ (∀𝑥𝜑 → (∀𝑥𝜓 → ∀𝑥𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | al2im 1782 | . 2 ⊢ (∀𝑥(𝜑 → (𝜓 → 𝜒)) → (∀𝑥𝜑 → (∀𝑥𝜓 → ∀𝑥𝜒))) | |
2 | al2imi.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
3 | 1, 2 | mpg 1764 | 1 ⊢ (∀𝑥𝜑 → (∀𝑥𝜓 → ∀𝑥𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1521 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-gen 1762 ax-4 1777 |
This theorem is referenced by: alanimi 1784 alimdh 1785 albi 1786 aleximi 1799 19.33b 1853 aevlem0 2022 axc16g 2172 axc11rvOLD 2178 axc11r 2223 axc10 2288 sbequi 2403 sbi1 2420 moim 2548 2eu6 2587 ral2imi 2976 ceqsalt 3259 difin0ss 3979 hbntg 31835 bj-2alim 32719 bj-ssbim 32746 bj-axc10v 32842 bj-ceqsalt0 32998 bj-ceqsalt1 32999 wl-spae 33436 wl-aetr 33447 wl-aleq 33452 wl-nfeqfb 33453 axc11-o 34555 pm10.57 38887 2al2imi 38889 19.41rg 39083 hbntal 39086 |
Copyright terms: Public domain | W3C validator |