Users' Mathboxes Mathbox for Jarvin Udandy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aistia Structured version   Visualization version   GIF version

Theorem aistia 41568
Description: Given a is equivalent to , there exists a proof for a. (Contributed by Jarvin Udandy, 30-Aug-2016.)
Hypothesis
Ref Expression
aistia.1 (𝜑 ↔ ⊤)
Assertion
Ref Expression
aistia 𝜑

Proof of Theorem aistia
StepHypRef Expression
1 aistia.1 . 2 (𝜑 ↔ ⊤)
2 tbtru 1641 . 2 (𝜑 ↔ (𝜑 ↔ ⊤))
31, 2mpbir 221 1 𝜑
Colors of variables: wff setvar class
Syntax hints:  wb 196  wtru 1631
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 197  df-tru 1633
This theorem is referenced by:  astbstanbst  41580  aistbistaandb  41581  aistbisfiaxb  41590  aisfbistiaxb  41591  aifftbifffaibif  41592  aifftbifffaibifff  41593  dandysum2p2e4  41669
  Copyright terms: Public domain W3C validator