![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > afvvfveq | Structured version Visualization version GIF version |
Description: The value of the alternative function at a set as argument equals the function's value at this argument. (Contributed by Alexander van der Vekens, 25-May-2017.) |
Ref | Expression |
---|---|
afvvfveq | ⊢ ((𝐹'''𝐴) ∈ 𝐵 → (𝐹'''𝐴) = (𝐹‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nvelim 41714 | . . 3 ⊢ ((𝐹'''𝐴) = V → ¬ (𝐹'''𝐴) ∈ 𝐵) | |
2 | 1 | necon2ai 2971 | . 2 ⊢ ((𝐹'''𝐴) ∈ 𝐵 → (𝐹'''𝐴) ≠ V) |
3 | afvnufveq 41741 | . 2 ⊢ ((𝐹'''𝐴) ≠ V → (𝐹'''𝐴) = (𝐹‘𝐴)) | |
4 | 2, 3 | syl 17 | 1 ⊢ ((𝐹'''𝐴) ∈ 𝐵 → (𝐹'''𝐴) = (𝐹‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1630 ∈ wcel 2144 ≠ wne 2942 Vcvv 3349 ‘cfv 6031 '''cafv 41708 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-8 2146 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-sep 4912 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ne 2943 df-rab 3069 df-v 3351 df-un 3726 df-if 4224 df-fv 6039 df-afv 41711 |
This theorem is referenced by: afv0fv0 41743 afv0nbfvbi 41745 aovvoveq 41786 |
Copyright terms: Public domain | W3C validator |