![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > afveq2 | Structured version Visualization version GIF version |
Description: Equality theorem for function value, analogous to fveq1 6303. (Contributed by Alexander van der Vekens, 22-Jul-2017.) |
Ref | Expression |
---|---|
afveq2 | ⊢ (𝐴 = 𝐵 → (𝐹'''𝐴) = (𝐹'''𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqidd 2725 | . 2 ⊢ (𝐴 = 𝐵 → 𝐹 = 𝐹) | |
2 | id 22 | . 2 ⊢ (𝐴 = 𝐵 → 𝐴 = 𝐵) | |
3 | 1, 2 | afveq12d 41636 | 1 ⊢ (𝐴 = 𝐵 → (𝐹'''𝐴) = (𝐹'''𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1596 '''cafv 41617 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1835 ax-4 1850 ax-5 1952 ax-6 2018 ax-7 2054 ax-9 2112 ax-10 2132 ax-11 2147 ax-12 2160 ax-13 2355 ax-ext 2704 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1599 df-ex 1818 df-nf 1823 df-sb 2011 df-clab 2711 df-cleq 2717 df-clel 2720 df-nfc 2855 df-rex 3020 df-rab 3023 df-v 3306 df-dif 3683 df-un 3685 df-in 3687 df-ss 3694 df-nul 4024 df-if 4195 df-sn 4286 df-pr 4288 df-op 4292 df-uni 4545 df-br 4761 df-opab 4821 df-xp 5224 df-rel 5225 df-cnv 5226 df-co 5227 df-dm 5228 df-res 5230 df-iota 5964 df-fun 6003 df-fv 6009 df-dfat 41619 df-afv 41620 |
This theorem is referenced by: ffnaov 41702 |
Copyright terms: Public domain | W3C validator |