![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > afvelrn | Structured version Visualization version GIF version |
Description: A function's value belongs to its range, analogous to fvelrn 6495. (Contributed by Alexander van der Vekens, 25-May-2017.) |
Ref | Expression |
---|---|
afvelrn | ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → (𝐹'''𝐴) ∈ ran 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funres 6072 | . . . . . 6 ⊢ (Fun 𝐹 → Fun (𝐹 ↾ {𝐴})) | |
2 | 1 | anim1i 594 | . . . . 5 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → (Fun (𝐹 ↾ {𝐴}) ∧ 𝐴 ∈ dom 𝐹)) |
3 | 2 | ancomd 453 | . . . 4 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴}))) |
4 | df-dfat 41710 | . . . 4 ⊢ (𝐹 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴}))) | |
5 | 3, 4 | sylibr 224 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → 𝐹 defAt 𝐴) |
6 | afvfundmfveq 41732 | . . . 4 ⊢ (𝐹 defAt 𝐴 → (𝐹'''𝐴) = (𝐹‘𝐴)) | |
7 | 6 | eqcomd 2776 | . . 3 ⊢ (𝐹 defAt 𝐴 → (𝐹‘𝐴) = (𝐹'''𝐴)) |
8 | 5, 7 | syl 17 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → (𝐹‘𝐴) = (𝐹'''𝐴)) |
9 | fvelrn 6495 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → (𝐹‘𝐴) ∈ ran 𝐹) | |
10 | 8, 9 | eqeltrrd 2850 | 1 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → (𝐹'''𝐴) ∈ ran 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 = wceq 1630 ∈ wcel 2144 {csn 4314 dom cdm 5249 ran crn 5250 ↾ cres 5251 Fun wfun 6025 ‘cfv 6031 defAt wdfat 41707 '''cafv 41708 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-sep 4912 ax-nul 4920 ax-pr 5034 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ral 3065 df-rex 3066 df-rab 3069 df-v 3351 df-sbc 3586 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-nul 4062 df-if 4224 df-sn 4315 df-pr 4317 df-op 4321 df-uni 4573 df-br 4785 df-opab 4845 df-id 5157 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-iota 5994 df-fun 6033 df-fn 6034 df-fv 6039 df-dfat 41710 df-afv 41711 |
This theorem is referenced by: fnafvelrn 41763 |
Copyright terms: Public domain | W3C validator |