MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  affineequiv Structured version   Visualization version   GIF version

Theorem affineequiv 24773
Description: Equivalence between two ways of expressing 𝐵 as an affine combination of 𝐴 and 𝐶. (Contributed by David Moews, 28-Feb-2017.)
Hypotheses
Ref Expression
affineequiv.A (𝜑𝐴 ∈ ℂ)
affineequiv.B (𝜑𝐵 ∈ ℂ)
affineequiv.C (𝜑𝐶 ∈ ℂ)
affineequiv.D (𝜑𝐷 ∈ ℂ)
Assertion
Ref Expression
affineequiv (𝜑 → (𝐵 = ((𝐷 · 𝐴) + ((1 − 𝐷) · 𝐶)) ↔ (𝐶𝐵) = (𝐷 · (𝐶𝐴))))

Proof of Theorem affineequiv
StepHypRef Expression
1 affineequiv.C . . . . . . . 8 (𝜑𝐶 ∈ ℂ)
2 affineequiv.D . . . . . . . . 9 (𝜑𝐷 ∈ ℂ)
32, 1mulcld 10272 . . . . . . . 8 (𝜑 → (𝐷 · 𝐶) ∈ ℂ)
4 affineequiv.A . . . . . . . . 9 (𝜑𝐴 ∈ ℂ)
52, 4mulcld 10272 . . . . . . . 8 (𝜑 → (𝐷 · 𝐴) ∈ ℂ)
61, 3, 5subsubd 10632 . . . . . . 7 (𝜑 → (𝐶 − ((𝐷 · 𝐶) − (𝐷 · 𝐴))) = ((𝐶 − (𝐷 · 𝐶)) + (𝐷 · 𝐴)))
71, 3subcld 10604 . . . . . . . 8 (𝜑 → (𝐶 − (𝐷 · 𝐶)) ∈ ℂ)
87, 5addcomd 10450 . . . . . . 7 (𝜑 → ((𝐶 − (𝐷 · 𝐶)) + (𝐷 · 𝐴)) = ((𝐷 · 𝐴) + (𝐶 − (𝐷 · 𝐶))))
96, 8eqtr2d 2795 . . . . . 6 (𝜑 → ((𝐷 · 𝐴) + (𝐶 − (𝐷 · 𝐶))) = (𝐶 − ((𝐷 · 𝐶) − (𝐷 · 𝐴))))
10 1cnd 10268 . . . . . . . . 9 (𝜑 → 1 ∈ ℂ)
1110, 2, 1subdird 10699 . . . . . . . 8 (𝜑 → ((1 − 𝐷) · 𝐶) = ((1 · 𝐶) − (𝐷 · 𝐶)))
121mulid2d 10270 . . . . . . . . 9 (𝜑 → (1 · 𝐶) = 𝐶)
1312oveq1d 6829 . . . . . . . 8 (𝜑 → ((1 · 𝐶) − (𝐷 · 𝐶)) = (𝐶 − (𝐷 · 𝐶)))
1411, 13eqtrd 2794 . . . . . . 7 (𝜑 → ((1 − 𝐷) · 𝐶) = (𝐶 − (𝐷 · 𝐶)))
1514oveq2d 6830 . . . . . 6 (𝜑 → ((𝐷 · 𝐴) + ((1 − 𝐷) · 𝐶)) = ((𝐷 · 𝐴) + (𝐶 − (𝐷 · 𝐶))))
16 affineequiv.B . . . . . . . 8 (𝜑𝐵 ∈ ℂ)
171, 16subcld 10604 . . . . . . . 8 (𝜑 → (𝐶𝐵) ∈ ℂ)
181, 4subcld 10604 . . . . . . . . 9 (𝜑 → (𝐶𝐴) ∈ ℂ)
192, 18mulcld 10272 . . . . . . . 8 (𝜑 → (𝐷 · (𝐶𝐴)) ∈ ℂ)
2016, 17, 19addsubassd 10624 . . . . . . 7 (𝜑 → ((𝐵 + (𝐶𝐵)) − (𝐷 · (𝐶𝐴))) = (𝐵 + ((𝐶𝐵) − (𝐷 · (𝐶𝐴)))))
2116, 1pncan3d 10607 . . . . . . . 8 (𝜑 → (𝐵 + (𝐶𝐵)) = 𝐶)
222, 1, 4subdid 10698 . . . . . . . 8 (𝜑 → (𝐷 · (𝐶𝐴)) = ((𝐷 · 𝐶) − (𝐷 · 𝐴)))
2321, 22oveq12d 6832 . . . . . . 7 (𝜑 → ((𝐵 + (𝐶𝐵)) − (𝐷 · (𝐶𝐴))) = (𝐶 − ((𝐷 · 𝐶) − (𝐷 · 𝐴))))
2420, 23eqtr3d 2796 . . . . . 6 (𝜑 → (𝐵 + ((𝐶𝐵) − (𝐷 · (𝐶𝐴)))) = (𝐶 − ((𝐷 · 𝐶) − (𝐷 · 𝐴))))
259, 15, 243eqtr4d 2804 . . . . 5 (𝜑 → ((𝐷 · 𝐴) + ((1 − 𝐷) · 𝐶)) = (𝐵 + ((𝐶𝐵) − (𝐷 · (𝐶𝐴)))))
2625eqeq2d 2770 . . . 4 (𝜑 → (𝐵 = ((𝐷 · 𝐴) + ((1 − 𝐷) · 𝐶)) ↔ 𝐵 = (𝐵 + ((𝐶𝐵) − (𝐷 · (𝐶𝐴))))))
2716addid1d 10448 . . . . 5 (𝜑 → (𝐵 + 0) = 𝐵)
2827eqeq1d 2762 . . . 4 (𝜑 → ((𝐵 + 0) = (𝐵 + ((𝐶𝐵) − (𝐷 · (𝐶𝐴)))) ↔ 𝐵 = (𝐵 + ((𝐶𝐵) − (𝐷 · (𝐶𝐴))))))
29 0cnd 10245 . . . . 5 (𝜑 → 0 ∈ ℂ)
3017, 19subcld 10604 . . . . 5 (𝜑 → ((𝐶𝐵) − (𝐷 · (𝐶𝐴))) ∈ ℂ)
3116, 29, 30addcand 10451 . . . 4 (𝜑 → ((𝐵 + 0) = (𝐵 + ((𝐶𝐵) − (𝐷 · (𝐶𝐴)))) ↔ 0 = ((𝐶𝐵) − (𝐷 · (𝐶𝐴)))))
3226, 28, 313bitr2d 296 . . 3 (𝜑 → (𝐵 = ((𝐷 · 𝐴) + ((1 − 𝐷) · 𝐶)) ↔ 0 = ((𝐶𝐵) − (𝐷 · (𝐶𝐴)))))
33 eqcom 2767 . . 3 (0 = ((𝐶𝐵) − (𝐷 · (𝐶𝐴))) ↔ ((𝐶𝐵) − (𝐷 · (𝐶𝐴))) = 0)
3432, 33syl6bb 276 . 2 (𝜑 → (𝐵 = ((𝐷 · 𝐴) + ((1 − 𝐷) · 𝐶)) ↔ ((𝐶𝐵) − (𝐷 · (𝐶𝐴))) = 0))
3517, 19subeq0ad 10614 . 2 (𝜑 → (((𝐶𝐵) − (𝐷 · (𝐶𝐴))) = 0 ↔ (𝐶𝐵) = (𝐷 · (𝐶𝐴))))
3634, 35bitrd 268 1 (𝜑 → (𝐵 = ((𝐷 · 𝐴) + ((1 − 𝐷) · 𝐶)) ↔ (𝐶𝐵) = (𝐷 · (𝐶𝐴))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196   = wceq 1632  wcel 2139  (class class class)co 6814  cc 10146  0cc0 10148  1c1 10149   + caddc 10151   · cmul 10153  cmin 10478
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-po 5187  df-so 5188  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-er 7913  df-en 8124  df-dom 8125  df-sdom 8126  df-pnf 10288  df-mnf 10289  df-ltxr 10291  df-sub 10480
This theorem is referenced by:  affineequiv2  24774  angpieqvd  24778  chordthmlem2  24780  chordthmlem4  24782
  Copyright terms: Public domain W3C validator