![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > aecoms | Structured version Visualization version GIF version |
Description: A commutation rule for identical variable specifiers. (Contributed by NM, 10-May-1993.) |
Ref | Expression |
---|---|
aecoms.1 | ⊢ (∀𝑥 𝑥 = 𝑦 → 𝜑) |
Ref | Expression |
---|---|
aecoms | ⊢ (∀𝑦 𝑦 = 𝑥 → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | aecom 2344 | . 2 ⊢ (∀𝑦 𝑦 = 𝑥 ↔ ∀𝑥 𝑥 = 𝑦) | |
2 | aecoms.1 | . 2 ⊢ (∀𝑥 𝑥 = 𝑦 → 𝜑) | |
3 | 1, 2 | sylbi 207 | 1 ⊢ (∀𝑦 𝑦 = 𝑥 → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1521 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-10 2059 ax-12 2087 ax-13 2282 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-ex 1745 df-nf 1750 |
This theorem is referenced by: axc11 2347 nd4 9450 axrepnd 9454 axpownd 9461 axregnd 9464 axinfnd 9466 axacndlem5 9471 axacnd 9472 wl-ax11-lem1 33492 wl-ax11-lem3 33494 wl-ax11-lem9 33500 wl-ax11-lem10 33501 e2ebind 39096 |
Copyright terms: Public domain | W3C validator |