Hilbert Space Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  HSE Home  >  Th. List  >  adjmul Structured version   Visualization version   GIF version

 Description: The adjoint of the scalar product of an operator. Theorem 3.11(ii) of [Beran] p. 106. (Contributed by NM, 21-Feb-2006.) (New usage is discouraged.)
Assertion
Ref Expression

Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dmadjop 28875 . . 3 (𝑇 ∈ dom adj𝑇: ℋ⟶ ℋ)
2 homulcl 28746 . . 3 ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → (𝐴 ·op 𝑇): ℋ⟶ ℋ)
31, 2sylan2 490 . 2 ((𝐴 ∈ ℂ ∧ 𝑇 ∈ dom adj) → (𝐴 ·op 𝑇): ℋ⟶ ℋ)
4 cjcl 13889 . . 3 (𝐴 ∈ ℂ → (∗‘𝐴) ∈ ℂ)
75, 6syl 17 . . 3 (𝑇 ∈ dom adj → (adj𝑇): ℋ⟶ ℋ)
8 homulcl 28746 . . 3 (((∗‘𝐴) ∈ ℂ ∧ (adj𝑇): ℋ⟶ ℋ) → ((∗‘𝐴) ·op (adj𝑇)): ℋ⟶ ℋ)
94, 7, 8syl2an 493 . 2 ((𝐴 ∈ ℂ ∧ 𝑇 ∈ dom adj) → ((∗‘𝐴) ·op (adj𝑇)): ℋ⟶ ℋ)
10 adj2 28921 . . . . . . . 8 ((𝑇 ∈ dom adj𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑇𝑥) ·ih 𝑦) = (𝑥 ·ih ((adj𝑇)‘𝑦)))
11103expb 1285 . . . . . . 7 ((𝑇 ∈ dom adj ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → ((𝑇𝑥) ·ih 𝑦) = (𝑥 ·ih ((adj𝑇)‘𝑦)))
1211adantll 750 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑇 ∈ dom adj) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → ((𝑇𝑥) ·ih 𝑦) = (𝑥 ·ih ((adj𝑇)‘𝑦)))
1312oveq2d 6706 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑇 ∈ dom adj) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (𝐴 · ((𝑇𝑥) ·ih 𝑦)) = (𝐴 · (𝑥 ·ih ((adj𝑇)‘𝑦))))
141ffvelrnda 6399 . . . . . . . . 9 ((𝑇 ∈ dom adj𝑥 ∈ ℋ) → (𝑇𝑥) ∈ ℋ)
15 ax-his3 28069 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (𝑇𝑥) ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝐴 · (𝑇𝑥)) ·ih 𝑦) = (𝐴 · ((𝑇𝑥) ·ih 𝑦)))
1614, 15syl3an2 1400 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (𝑇 ∈ dom adj𝑥 ∈ ℋ) ∧ 𝑦 ∈ ℋ) → ((𝐴 · (𝑇𝑥)) ·ih 𝑦) = (𝐴 · ((𝑇𝑥) ·ih 𝑦)))
17163exp 1283 . . . . . . 7 (𝐴 ∈ ℂ → ((𝑇 ∈ dom adj𝑥 ∈ ℋ) → (𝑦 ∈ ℋ → ((𝐴 · (𝑇𝑥)) ·ih 𝑦) = (𝐴 · ((𝑇𝑥) ·ih 𝑦)))))
1817expd 451 . . . . . 6 (𝐴 ∈ ℂ → (𝑇 ∈ dom adj → (𝑥 ∈ ℋ → (𝑦 ∈ ℋ → ((𝐴 · (𝑇𝑥)) ·ih 𝑦) = (𝐴 · ((𝑇𝑥) ·ih 𝑦))))))
1918imp43 620 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑇 ∈ dom adj) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → ((𝐴 · (𝑇𝑥)) ·ih 𝑦) = (𝐴 · ((𝑇𝑥) ·ih 𝑦)))
20 simpll 805 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑇 ∈ dom adj) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → 𝐴 ∈ ℂ)
21 simprl 809 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑇 ∈ dom adj) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → 𝑥 ∈ ℋ)
22 adjcl 28919 . . . . . . 7 ((𝑇 ∈ dom adj𝑦 ∈ ℋ) → ((adj𝑇)‘𝑦) ∈ ℋ)
2322ad2ant2l 797 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑇 ∈ dom adj) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → ((adj𝑇)‘𝑦) ∈ ℋ)
24 his52 28072 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℋ ∧ ((adj𝑇)‘𝑦) ∈ ℋ) → (𝑥 ·ih ((∗‘𝐴) · ((adj𝑇)‘𝑦))) = (𝐴 · (𝑥 ·ih ((adj𝑇)‘𝑦))))
2520, 21, 23, 24syl3anc 1366 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑇 ∈ dom adj) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (𝑥 ·ih ((∗‘𝐴) · ((adj𝑇)‘𝑦))) = (𝐴 · (𝑥 ·ih ((adj𝑇)‘𝑦))))
2613, 19, 253eqtr4d 2695 . . . 4 (((𝐴 ∈ ℂ ∧ 𝑇 ∈ dom adj) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → ((𝐴 · (𝑇𝑥)) ·ih 𝑦) = (𝑥 ·ih ((∗‘𝐴) · ((adj𝑇)‘𝑦))))
27 homval 28728 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → ((𝐴 ·op 𝑇)‘𝑥) = (𝐴 · (𝑇𝑥)))
281, 27syl3an2 1400 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑇 ∈ dom adj𝑥 ∈ ℋ) → ((𝐴 ·op 𝑇)‘𝑥) = (𝐴 · (𝑇𝑥)))
29283expa 1284 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑇 ∈ dom adj) ∧ 𝑥 ∈ ℋ) → ((𝐴 ·op 𝑇)‘𝑥) = (𝐴 · (𝑇𝑥)))
3029adantrr 753 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑇 ∈ dom adj) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → ((𝐴 ·op 𝑇)‘𝑥) = (𝐴 · (𝑇𝑥)))
3130oveq1d 6705 . . . 4 (((𝐴 ∈ ℂ ∧ 𝑇 ∈ dom adj) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (((𝐴 ·op 𝑇)‘𝑥) ·ih 𝑦) = ((𝐴 · (𝑇𝑥)) ·ih 𝑦))
32 id 22 . . . . . . . 8 (𝑦 ∈ ℋ → 𝑦 ∈ ℋ)
33 homval 28728 . . . . . . . 8 (((∗‘𝐴) ∈ ℂ ∧ (adj𝑇): ℋ⟶ ℋ ∧ 𝑦 ∈ ℋ) → (((∗‘𝐴) ·op (adj𝑇))‘𝑦) = ((∗‘𝐴) · ((adj𝑇)‘𝑦)))
344, 7, 32, 33syl3an 1408 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑇 ∈ dom adj𝑦 ∈ ℋ) → (((∗‘𝐴) ·op (adj𝑇))‘𝑦) = ((∗‘𝐴) · ((adj𝑇)‘𝑦)))
35343expa 1284 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑇 ∈ dom adj) ∧ 𝑦 ∈ ℋ) → (((∗‘𝐴) ·op (adj𝑇))‘𝑦) = ((∗‘𝐴) · ((adj𝑇)‘𝑦)))
3635adantrl 752 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑇 ∈ dom adj) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (((∗‘𝐴) ·op (adj𝑇))‘𝑦) = ((∗‘𝐴) · ((adj𝑇)‘𝑦)))
3736oveq2d 6706 . . . 4 (((𝐴 ∈ ℂ ∧ 𝑇 ∈ dom adj) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (𝑥 ·ih (((∗‘𝐴) ·op (adj𝑇))‘𝑦)) = (𝑥 ·ih ((∗‘𝐴) · ((adj𝑇)‘𝑦))))
3826, 31, 373eqtr4d 2695 . . 3 (((𝐴 ∈ ℂ ∧ 𝑇 ∈ dom adj) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (((𝐴 ·op 𝑇)‘𝑥) ·ih 𝑦) = (𝑥 ·ih (((∗‘𝐴) ·op (adj𝑇))‘𝑦)))
3938ralrimivva 3000 . 2 ((𝐴 ∈ ℂ ∧ 𝑇 ∈ dom adj) → ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (((𝐴 ·op 𝑇)‘𝑥) ·ih 𝑦) = (𝑥 ·ih (((∗‘𝐴) ·op (adj𝑇))‘𝑦)))
40 adjeq 28922 . 2 (((𝐴 ·op 𝑇): ℋ⟶ ℋ ∧ ((∗‘𝐴) ·op (adj𝑇)): ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (((𝐴 ·op 𝑇)‘𝑥) ·ih 𝑦) = (𝑥 ·ih (((∗‘𝐴) ·op (adj𝑇))‘𝑦))) → (adj‘(𝐴 ·op 𝑇)) = ((∗‘𝐴) ·op (adj𝑇)))
413, 9, 39, 40syl3anc 1366 1 ((𝐴 ∈ ℂ ∧ 𝑇 ∈ dom adj) → (adj‘(𝐴 ·op 𝑇)) = ((∗‘𝐴) ·op (adj𝑇)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1523   ∈ wcel 2030  ∀wral 2941  dom cdm 5143  ⟶wf 5922  ‘cfv 5926  (class class class)co 6690  ℂcc 9972   · cmul 9979  ∗ccj 13880   ℋchil 27904   ·ℎ csm 27906   ·ih csp 27907   ·op chot 27924  adjℎcado 27940 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-hilex 27984  ax-hfvadd 27985  ax-hvcom 27986  ax-hvass 27987  ax-hv0cl 27988  ax-hvaddid 27989  ax-hfvmul 27990  ax-hvmulid 27991  ax-hvdistr2 27994  ax-hvmul0 27995  ax-hfi 28064  ax-his1 28067  ax-his2 28068  ax-his3 28069  ax-his4 28070 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-po 5064  df-so 5065  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-er 7787  df-map 7901  df-en 7998  df-dom 7999  df-sdom 8000  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-2 11117  df-cj 13883  df-re 13884  df-im 13885  df-hvsub 27956  df-homul 28718  df-adjh 28836 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator