HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  adjadj Structured version   Visualization version   GIF version

Theorem adjadj 29104
Description: Double adjoint. Theorem 3.11(iv) of [Beran] p. 106. (Contributed by NM, 15-Feb-2006.) (New usage is discouraged.)
Assertion
Ref Expression
adjadj (𝑇 ∈ dom adj → (adj‘(adj𝑇)) = 𝑇)

Proof of Theorem adjadj
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 adj2 29102 . . . . 5 ((𝑇 ∈ dom adj𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑇𝑥) ·ih 𝑦) = (𝑥 ·ih ((adj𝑇)‘𝑦)))
2 dmadjrn 29063 . . . . . 6 (𝑇 ∈ dom adj → (adj𝑇) ∈ dom adj)
3 adj1 29101 . . . . . 6 (((adj𝑇) ∈ dom adj𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑥 ·ih ((adj𝑇)‘𝑦)) = (((adj‘(adj𝑇))‘𝑥) ·ih 𝑦))
42, 3syl3an1 1167 . . . . 5 ((𝑇 ∈ dom adj𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑥 ·ih ((adj𝑇)‘𝑦)) = (((adj‘(adj𝑇))‘𝑥) ·ih 𝑦))
51, 4eqtr2d 2795 . . . 4 ((𝑇 ∈ dom adj𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (((adj‘(adj𝑇))‘𝑥) ·ih 𝑦) = ((𝑇𝑥) ·ih 𝑦))
653expib 1117 . . 3 (𝑇 ∈ dom adj → ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (((adj‘(adj𝑇))‘𝑥) ·ih 𝑦) = ((𝑇𝑥) ·ih 𝑦)))
76ralrimivv 3108 . 2 (𝑇 ∈ dom adj → ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (((adj‘(adj𝑇))‘𝑥) ·ih 𝑦) = ((𝑇𝑥) ·ih 𝑦))
8 dmadjrn 29063 . . . 4 ((adj𝑇) ∈ dom adj → (adj‘(adj𝑇)) ∈ dom adj)
9 dmadjop 29056 . . . 4 ((adj‘(adj𝑇)) ∈ dom adj → (adj‘(adj𝑇)): ℋ⟶ ℋ)
102, 8, 93syl 18 . . 3 (𝑇 ∈ dom adj → (adj‘(adj𝑇)): ℋ⟶ ℋ)
11 dmadjop 29056 . . 3 (𝑇 ∈ dom adj𝑇: ℋ⟶ ℋ)
12 hoeq1 28998 . . 3 (((adj‘(adj𝑇)): ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) → (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (((adj‘(adj𝑇))‘𝑥) ·ih 𝑦) = ((𝑇𝑥) ·ih 𝑦) ↔ (adj‘(adj𝑇)) = 𝑇))
1310, 11, 12syl2anc 696 . 2 (𝑇 ∈ dom adj → (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (((adj‘(adj𝑇))‘𝑥) ·ih 𝑦) = ((𝑇𝑥) ·ih 𝑦) ↔ (adj‘(adj𝑇)) = 𝑇))
147, 13mpbid 222 1 (𝑇 ∈ dom adj → (adj‘(adj𝑇)) = 𝑇)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  w3a 1072   = wceq 1632  wcel 2139  wral 3050  dom cdm 5266  wf 6045  cfv 6049  (class class class)co 6813  chil 28085   ·ih csp 28088  adjcado 28121
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205  ax-hilex 28165  ax-hfvadd 28166  ax-hvcom 28167  ax-hvass 28168  ax-hv0cl 28169  ax-hvaddid 28170  ax-hfvmul 28171  ax-hvmulid 28172  ax-hvdistr2 28175  ax-hvmul0 28176  ax-hfi 28245  ax-his1 28248  ax-his2 28249  ax-his3 28250  ax-his4 28251
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-po 5187  df-so 5188  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-er 7911  df-map 8025  df-en 8122  df-dom 8123  df-sdom 8124  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-div 10877  df-2 11271  df-cj 14038  df-re 14039  df-im 14040  df-hvsub 28137  df-adjh 29017
This theorem is referenced by:  adjbd1o  29253  adjsslnop  29255  nmopadji  29258  adjeq0  29259  nmopcoadji  29269  nmopcoadj2i  29270
  Copyright terms: Public domain W3C validator