![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > addsubd | Structured version Visualization version GIF version |
Description: Law for subtraction and addition. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
negidd.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
pncand.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
subaddd.3 | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
Ref | Expression |
---|---|
addsubd | ⊢ (𝜑 → ((𝐴 + 𝐵) − 𝐶) = ((𝐴 − 𝐶) + 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | negidd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | pncand.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
3 | subaddd.3 | . 2 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
4 | addsub 10484 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) − 𝐶) = ((𝐴 − 𝐶) + 𝐵)) | |
5 | 1, 2, 3, 4 | syl3anc 1477 | 1 ⊢ (𝜑 → ((𝐴 + 𝐵) − 𝐶) = ((𝐴 − 𝐶) + 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1632 ∈ wcel 2139 (class class class)co 6813 ℂcc 10126 + caddc 10131 − cmin 10458 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 ax-resscn 10185 ax-1cn 10186 ax-icn 10187 ax-addcl 10188 ax-addrcl 10189 ax-mulcl 10190 ax-mulrcl 10191 ax-mulcom 10192 ax-addass 10193 ax-mulass 10194 ax-distr 10195 ax-i2m1 10196 ax-1ne0 10197 ax-1rid 10198 ax-rnegex 10199 ax-rrecex 10200 ax-cnre 10201 ax-pre-lttri 10202 ax-pre-lttrn 10203 ax-pre-ltadd 10204 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-po 5187 df-so 5188 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6774 df-ov 6816 df-oprab 6817 df-mpt2 6818 df-er 7911 df-en 8122 df-dom 8123 df-sdom 8124 df-pnf 10268 df-mnf 10269 df-ltxr 10271 df-sub 10460 |
This theorem is referenced by: lesub2 10715 fzoshftral 12779 modadd1 12901 discr 13195 bcp1n 13297 bcpasc 13302 revccat 13715 crre 14053 isercoll2 14598 binomlem 14760 climcndslem1 14780 binomfallfaclem2 14970 pythagtriplem14 15735 vdwlem6 15892 gsumccat 17579 srgbinomlem3 18742 itgcnlem 23755 dvcvx 23982 dvfsumlem1 23988 dvfsumlem2 23989 plymullem1 24169 aaliou3lem2 24297 abelthlem2 24385 tangtx 24456 loglesqrt 24698 dcubic1 24771 quart1lem 24781 quartlem1 24783 basellem3 25008 basellem5 25010 chtub 25136 logfaclbnd 25146 bcp1ctr 25203 lgsquad2lem1 25308 2lgslem3b 25321 selberglem1 25433 selberg3 25447 selbergr 25456 selberg3r 25457 pntlemf 25493 pntlemo 25495 brbtwn2 25984 colinearalglem1 25985 colinearalglem2 25986 crctcsh 26927 clwwlkccatlem 27112 clwwlkel 27175 clwwlkwwlksb 27184 clwwlknonex2lem1 27256 ltesubnnd 29877 ballotlemfp1 30862 subfacp1lem6 31474 fwddifnp1 32578 poimirlem25 33747 poimirlem26 33748 jm2.24nn 38028 jm2.18 38057 jm2.25 38068 dvnmul 40661 fourierdlem4 40831 fourierdlem26 40853 fourierdlem42 40869 vonicclem1 41403 cnambpcma 41819 cnapbmcpd 41820 fmtnorec4 41971 ltsubaddb 42814 ltsubadd2b 42816 |
Copyright terms: Public domain | W3C validator |