![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > addsubassd | Structured version Visualization version GIF version |
Description: Associative-type law for subtraction and addition. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
negidd.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
pncand.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
subaddd.3 | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
Ref | Expression |
---|---|
addsubassd | ⊢ (𝜑 → ((𝐴 + 𝐵) − 𝐶) = (𝐴 + (𝐵 − 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | negidd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | pncand.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
3 | subaddd.3 | . 2 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
4 | addsubass 10493 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) − 𝐶) = (𝐴 + (𝐵 − 𝐶))) | |
5 | 1, 2, 3, 4 | syl3anc 1476 | 1 ⊢ (𝜑 → ((𝐴 + 𝐵) − 𝐶) = (𝐴 + (𝐵 − 𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1631 ∈ wcel 2145 (class class class)co 6793 ℂcc 10136 + caddc 10141 − cmin 10468 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 ax-resscn 10195 ax-1cn 10196 ax-icn 10197 ax-addcl 10198 ax-addrcl 10199 ax-mulcl 10200 ax-mulrcl 10201 ax-mulcom 10202 ax-addass 10203 ax-mulass 10204 ax-distr 10205 ax-i2m1 10206 ax-1ne0 10207 ax-1rid 10208 ax-rnegex 10209 ax-rrecex 10210 ax-cnre 10211 ax-pre-lttri 10212 ax-pre-lttrn 10213 ax-pre-ltadd 10214 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 835 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-op 4323 df-uni 4575 df-br 4787 df-opab 4847 df-mpt 4864 df-id 5157 df-po 5170 df-so 5171 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-riota 6754 df-ov 6796 df-oprab 6797 df-mpt2 6798 df-er 7896 df-en 8110 df-dom 8111 df-sdom 8112 df-pnf 10278 df-mnf 10279 df-ltxr 10281 df-sub 10470 |
This theorem is referenced by: mulsubdivbinom2 13253 hashun3 13375 swrdccatin2 13696 incexclem 14775 bpoly4 14996 gsumccat 17586 mndodconglem 18167 efgredleme 18363 ovollb2lem 23476 ovolunlem1 23485 ply1divex 24116 tangtx 24478 tanarg 24586 affineequiv 24774 chordthmlem4 24783 heron 24786 dquartlem2 24800 quart 24809 atanlogsublem 24863 chtublem 25157 bposlem9 25238 2lgslem3b 25343 2lgslem3c 25344 2lgslem3d 25345 dchrisum0re 25423 mulog2sumlem1 25444 selberglem2 25456 selberg4 25471 selbergr 25478 selberg3r 25479 selberg34r 25481 brbtwn2 26006 ax5seglem2 26030 wwlksnextwrd 27041 wwlksnextinj 27043 clwwlkccatlem 27139 ex-ind-dvds 27660 lt2addrd 29856 archirngz 30083 fibp1 30803 dnibndlem10 32814 bj-bary1lem 33497 acongeq 38076 jm3.1lem2 38111 inductionexd 38979 fzisoeu 40031 sumnnodd 40380 stoweidlem26 40760 wallispilem4 40802 wallispi2lem1 40805 wallispi2lem2 40806 fourierdlem26 40867 fourierdlem41 40882 fourierdlem42 40883 fourierdlem48 40888 fourierdlem63 40903 fourierdlem107 40947 smfmullem1 41518 fmtnorec2lem 41982 fmtnorec3 41988 lighneallem3 42052 bgoldbtbndlem2 42222 m1modmmod 42844 assraddsubd 43048 |
Copyright terms: Public domain | W3C validator |