MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addsrpr Structured version   Visualization version   GIF version

Theorem addsrpr 9584
Description: Addition of signed reals in terms of positive reals. (Contributed by NM, 3-Sep-1995.) (Revised by Mario Carneiro, 12-Aug-2015.) (New usage is discouraged.)
Assertion
Ref Expression
addsrpr (((𝐴P𝐵P) ∧ (𝐶P𝐷P)) → ([⟨𝐴, 𝐵⟩] ~R +R [⟨𝐶, 𝐷⟩] ~R ) = [⟨(𝐴 +P 𝐶), (𝐵 +P 𝐷)⟩] ~R )

Proof of Theorem addsrpr
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑣 𝑢 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opelxpi 4912 . . . 4 ((𝐴P𝐵P) → ⟨𝐴, 𝐵⟩ ∈ (P × P))
2 enrex 9576 . . . . 5 ~R ∈ V
32ecelqsi 7501 . . . 4 (⟨𝐴, 𝐵⟩ ∈ (P × P) → [⟨𝐴, 𝐵⟩] ~R ∈ ((P × P) / ~R ))
41, 3syl 17 . . 3 ((𝐴P𝐵P) → [⟨𝐴, 𝐵⟩] ~R ∈ ((P × P) / ~R ))
5 opelxpi 4912 . . . 4 ((𝐶P𝐷P) → ⟨𝐶, 𝐷⟩ ∈ (P × P))
62ecelqsi 7501 . . . 4 (⟨𝐶, 𝐷⟩ ∈ (P × P) → [⟨𝐶, 𝐷⟩] ~R ∈ ((P × P) / ~R ))
75, 6syl 17 . . 3 ((𝐶P𝐷P) → [⟨𝐶, 𝐷⟩] ~R ∈ ((P × P) / ~R ))
84, 7anim12i 582 . 2 (((𝐴P𝐵P) ∧ (𝐶P𝐷P)) → ([⟨𝐴, 𝐵⟩] ~R ∈ ((P × P) / ~R ) ∧ [⟨𝐶, 𝐷⟩] ~R ∈ ((P × P) / ~R )))
9 eqid 2505 . . . 4 [⟨𝐴, 𝐵⟩] ~R = [⟨𝐴, 𝐵⟩] ~R
10 eqid 2505 . . . 4 [⟨𝐶, 𝐷⟩] ~R = [⟨𝐶, 𝐷⟩] ~R
119, 10pm3.2i 464 . . 3 ([⟨𝐴, 𝐵⟩] ~R = [⟨𝐴, 𝐵⟩] ~R ∧ [⟨𝐶, 𝐷⟩] ~R = [⟨𝐶, 𝐷⟩] ~R )
12 eqid 2505 . . 3 [⟨(𝐴 +P 𝐶), (𝐵 +P 𝐷)⟩] ~R = [⟨(𝐴 +P 𝐶), (𝐵 +P 𝐷)⟩] ~R
13 opeq12 4198 . . . . . . . . 9 ((𝑤 = 𝐴𝑣 = 𝐵) → ⟨𝑤, 𝑣⟩ = ⟨𝐴, 𝐵⟩)
1413eceq1d 7481 . . . . . . . 8 ((𝑤 = 𝐴𝑣 = 𝐵) → [⟨𝑤, 𝑣⟩] ~R = [⟨𝐴, 𝐵⟩] ~R )
1514eqeq2d 2515 . . . . . . 7 ((𝑤 = 𝐴𝑣 = 𝐵) → ([⟨𝐴, 𝐵⟩] ~R = [⟨𝑤, 𝑣⟩] ~R ↔ [⟨𝐴, 𝐵⟩] ~R = [⟨𝐴, 𝐵⟩] ~R ))
1615anbi1d 728 . . . . . 6 ((𝑤 = 𝐴𝑣 = 𝐵) → (([⟨𝐴, 𝐵⟩] ~R = [⟨𝑤, 𝑣⟩] ~R ∧ [⟨𝐶, 𝐷⟩] ~R = [⟨𝐶, 𝐷⟩] ~R ) ↔ ([⟨𝐴, 𝐵⟩] ~R = [⟨𝐴, 𝐵⟩] ~R ∧ [⟨𝐶, 𝐷⟩] ~R = [⟨𝐶, 𝐷⟩] ~R )))
17 simpl 466 . . . . . . . . . 10 ((𝑤 = 𝐴𝑣 = 𝐵) → 𝑤 = 𝐴)
1817oveq1d 6378 . . . . . . . . 9 ((𝑤 = 𝐴𝑣 = 𝐵) → (𝑤 +P 𝐶) = (𝐴 +P 𝐶))
19 simpr 470 . . . . . . . . . 10 ((𝑤 = 𝐴𝑣 = 𝐵) → 𝑣 = 𝐵)
2019oveq1d 6378 . . . . . . . . 9 ((𝑤 = 𝐴𝑣 = 𝐵) → (𝑣 +P 𝐷) = (𝐵 +P 𝐷))
2118, 20opeq12d 4204 . . . . . . . 8 ((𝑤 = 𝐴𝑣 = 𝐵) → ⟨(𝑤 +P 𝐶), (𝑣 +P 𝐷)⟩ = ⟨(𝐴 +P 𝐶), (𝐵 +P 𝐷)⟩)
2221eceq1d 7481 . . . . . . 7 ((𝑤 = 𝐴𝑣 = 𝐵) → [⟨(𝑤 +P 𝐶), (𝑣 +P 𝐷)⟩] ~R = [⟨(𝐴 +P 𝐶), (𝐵 +P 𝐷)⟩] ~R )
2322eqeq2d 2515 . . . . . 6 ((𝑤 = 𝐴𝑣 = 𝐵) → ([⟨(𝐴 +P 𝐶), (𝐵 +P 𝐷)⟩] ~R = [⟨(𝑤 +P 𝐶), (𝑣 +P 𝐷)⟩] ~R ↔ [⟨(𝐴 +P 𝐶), (𝐵 +P 𝐷)⟩] ~R = [⟨(𝐴 +P 𝐶), (𝐵 +P 𝐷)⟩] ~R ))
2416, 23anbi12d 734 . . . . 5 ((𝑤 = 𝐴𝑣 = 𝐵) → ((([⟨𝐴, 𝐵⟩] ~R = [⟨𝑤, 𝑣⟩] ~R ∧ [⟨𝐶, 𝐷⟩] ~R = [⟨𝐶, 𝐷⟩] ~R ) ∧ [⟨(𝐴 +P 𝐶), (𝐵 +P 𝐷)⟩] ~R = [⟨(𝑤 +P 𝐶), (𝑣 +P 𝐷)⟩] ~R ) ↔ (([⟨𝐴, 𝐵⟩] ~R = [⟨𝐴, 𝐵⟩] ~R ∧ [⟨𝐶, 𝐷⟩] ~R = [⟨𝐶, 𝐷⟩] ~R ) ∧ [⟨(𝐴 +P 𝐶), (𝐵 +P 𝐷)⟩] ~R = [⟨(𝐴 +P 𝐶), (𝐵 +P 𝐷)⟩] ~R )))
2524spc2egv 3157 . . . 4 ((𝐴P𝐵P) → ((([⟨𝐴, 𝐵⟩] ~R = [⟨𝐴, 𝐵⟩] ~R ∧ [⟨𝐶, 𝐷⟩] ~R = [⟨𝐶, 𝐷⟩] ~R ) ∧ [⟨(𝐴 +P 𝐶), (𝐵 +P 𝐷)⟩] ~R = [⟨(𝐴 +P 𝐶), (𝐵 +P 𝐷)⟩] ~R ) → ∃𝑤𝑣(([⟨𝐴, 𝐵⟩] ~R = [⟨𝑤, 𝑣⟩] ~R ∧ [⟨𝐶, 𝐷⟩] ~R = [⟨𝐶, 𝐷⟩] ~R ) ∧ [⟨(𝐴 +P 𝐶), (𝐵 +P 𝐷)⟩] ~R = [⟨(𝑤 +P 𝐶), (𝑣 +P 𝐷)⟩] ~R )))
26 opeq12 4198 . . . . . . . . . 10 ((𝑢 = 𝐶𝑡 = 𝐷) → ⟨𝑢, 𝑡⟩ = ⟨𝐶, 𝐷⟩)
2726eceq1d 7481 . . . . . . . . 9 ((𝑢 = 𝐶𝑡 = 𝐷) → [⟨𝑢, 𝑡⟩] ~R = [⟨𝐶, 𝐷⟩] ~R )
2827eqeq2d 2515 . . . . . . . 8 ((𝑢 = 𝐶𝑡 = 𝐷) → ([⟨𝐶, 𝐷⟩] ~R = [⟨𝑢, 𝑡⟩] ~R ↔ [⟨𝐶, 𝐷⟩] ~R = [⟨𝐶, 𝐷⟩] ~R ))
2928anbi2d 727 . . . . . . 7 ((𝑢 = 𝐶𝑡 = 𝐷) → (([⟨𝐴, 𝐵⟩] ~R = [⟨𝑤, 𝑣⟩] ~R ∧ [⟨𝐶, 𝐷⟩] ~R = [⟨𝑢, 𝑡⟩] ~R ) ↔ ([⟨𝐴, 𝐵⟩] ~R = [⟨𝑤, 𝑣⟩] ~R ∧ [⟨𝐶, 𝐷⟩] ~R = [⟨𝐶, 𝐷⟩] ~R )))
30 simpl 466 . . . . . . . . . . 11 ((𝑢 = 𝐶𝑡 = 𝐷) → 𝑢 = 𝐶)
3130oveq2d 6379 . . . . . . . . . 10 ((𝑢 = 𝐶𝑡 = 𝐷) → (𝑤 +P 𝑢) = (𝑤 +P 𝐶))
32 simpr 470 . . . . . . . . . . 11 ((𝑢 = 𝐶𝑡 = 𝐷) → 𝑡 = 𝐷)
3332oveq2d 6379 . . . . . . . . . 10 ((𝑢 = 𝐶𝑡 = 𝐷) → (𝑣 +P 𝑡) = (𝑣 +P 𝐷))
3431, 33opeq12d 4204 . . . . . . . . 9 ((𝑢 = 𝐶𝑡 = 𝐷) → ⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩ = ⟨(𝑤 +P 𝐶), (𝑣 +P 𝐷)⟩)
3534eceq1d 7481 . . . . . . . 8 ((𝑢 = 𝐶𝑡 = 𝐷) → [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R = [⟨(𝑤 +P 𝐶), (𝑣 +P 𝐷)⟩] ~R )
3635eqeq2d 2515 . . . . . . 7 ((𝑢 = 𝐶𝑡 = 𝐷) → ([⟨(𝐴 +P 𝐶), (𝐵 +P 𝐷)⟩] ~R = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R ↔ [⟨(𝐴 +P 𝐶), (𝐵 +P 𝐷)⟩] ~R = [⟨(𝑤 +P 𝐶), (𝑣 +P 𝐷)⟩] ~R ))
3729, 36anbi12d 734 . . . . . 6 ((𝑢 = 𝐶𝑡 = 𝐷) → ((([⟨𝐴, 𝐵⟩] ~R = [⟨𝑤, 𝑣⟩] ~R ∧ [⟨𝐶, 𝐷⟩] ~R = [⟨𝑢, 𝑡⟩] ~R ) ∧ [⟨(𝐴 +P 𝐶), (𝐵 +P 𝐷)⟩] ~R = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R ) ↔ (([⟨𝐴, 𝐵⟩] ~R = [⟨𝑤, 𝑣⟩] ~R ∧ [⟨𝐶, 𝐷⟩] ~R = [⟨𝐶, 𝐷⟩] ~R ) ∧ [⟨(𝐴 +P 𝐶), (𝐵 +P 𝐷)⟩] ~R = [⟨(𝑤 +P 𝐶), (𝑣 +P 𝐷)⟩] ~R )))
3837spc2egv 3157 . . . . 5 ((𝐶P𝐷P) → ((([⟨𝐴, 𝐵⟩] ~R = [⟨𝑤, 𝑣⟩] ~R ∧ [⟨𝐶, 𝐷⟩] ~R = [⟨𝐶, 𝐷⟩] ~R ) ∧ [⟨(𝐴 +P 𝐶), (𝐵 +P 𝐷)⟩] ~R = [⟨(𝑤 +P 𝐶), (𝑣 +P 𝐷)⟩] ~R ) → ∃𝑢𝑡(([⟨𝐴, 𝐵⟩] ~R = [⟨𝑤, 𝑣⟩] ~R ∧ [⟨𝐶, 𝐷⟩] ~R = [⟨𝑢, 𝑡⟩] ~R ) ∧ [⟨(𝐴 +P 𝐶), (𝐵 +P 𝐷)⟩] ~R = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R )))
39382eximdv 1797 . . . 4 ((𝐶P𝐷P) → (∃𝑤𝑣(([⟨𝐴, 𝐵⟩] ~R = [⟨𝑤, 𝑣⟩] ~R ∧ [⟨𝐶, 𝐷⟩] ~R = [⟨𝐶, 𝐷⟩] ~R ) ∧ [⟨(𝐴 +P 𝐶), (𝐵 +P 𝐷)⟩] ~R = [⟨(𝑤 +P 𝐶), (𝑣 +P 𝐷)⟩] ~R ) → ∃𝑤𝑣𝑢𝑡(([⟨𝐴, 𝐵⟩] ~R = [⟨𝑤, 𝑣⟩] ~R ∧ [⟨𝐶, 𝐷⟩] ~R = [⟨𝑢, 𝑡⟩] ~R ) ∧ [⟨(𝐴 +P 𝐶), (𝐵 +P 𝐷)⟩] ~R = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R )))
4025, 39sylan9 678 . . 3 (((𝐴P𝐵P) ∧ (𝐶P𝐷P)) → ((([⟨𝐴, 𝐵⟩] ~R = [⟨𝐴, 𝐵⟩] ~R ∧ [⟨𝐶, 𝐷⟩] ~R = [⟨𝐶, 𝐷⟩] ~R ) ∧ [⟨(𝐴 +P 𝐶), (𝐵 +P 𝐷)⟩] ~R = [⟨(𝐴 +P 𝐶), (𝐵 +P 𝐷)⟩] ~R ) → ∃𝑤𝑣𝑢𝑡(([⟨𝐴, 𝐵⟩] ~R = [⟨𝑤, 𝑣⟩] ~R ∧ [⟨𝐶, 𝐷⟩] ~R = [⟨𝑢, 𝑡⟩] ~R ) ∧ [⟨(𝐴 +P 𝐶), (𝐵 +P 𝐷)⟩] ~R = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R )))
4111, 12, 40mp2ani 701 . 2 (((𝐴P𝐵P) ∧ (𝐶P𝐷P)) → ∃𝑤𝑣𝑢𝑡(([⟨𝐴, 𝐵⟩] ~R = [⟨𝑤, 𝑣⟩] ~R ∧ [⟨𝐶, 𝐷⟩] ~R = [⟨𝑢, 𝑡⟩] ~R ) ∧ [⟨(𝐴 +P 𝐶), (𝐵 +P 𝐷)⟩] ~R = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R ))
42 ecexg 7444 . . . 4 ( ~R ∈ V → [⟨(𝐴 +P 𝐶), (𝐵 +P 𝐷)⟩] ~R ∈ V)
432, 42ax-mp 5 . . 3 [⟨(𝐴 +P 𝐶), (𝐵 +P 𝐷)⟩] ~R ∈ V
44 simp1 1044 . . . . . . . 8 ((𝑥 = [⟨𝐴, 𝐵⟩] ~R𝑦 = [⟨𝐶, 𝐷⟩] ~R𝑧 = [⟨(𝐴 +P 𝐶), (𝐵 +P 𝐷)⟩] ~R ) → 𝑥 = [⟨𝐴, 𝐵⟩] ~R )
4544eqeq1d 2507 . . . . . . 7 ((𝑥 = [⟨𝐴, 𝐵⟩] ~R𝑦 = [⟨𝐶, 𝐷⟩] ~R𝑧 = [⟨(𝐴 +P 𝐶), (𝐵 +P 𝐷)⟩] ~R ) → (𝑥 = [⟨𝑤, 𝑣⟩] ~R ↔ [⟨𝐴, 𝐵⟩] ~R = [⟨𝑤, 𝑣⟩] ~R ))
46 simp2 1045 . . . . . . . 8 ((𝑥 = [⟨𝐴, 𝐵⟩] ~R𝑦 = [⟨𝐶, 𝐷⟩] ~R𝑧 = [⟨(𝐴 +P 𝐶), (𝐵 +P 𝐷)⟩] ~R ) → 𝑦 = [⟨𝐶, 𝐷⟩] ~R )
4746eqeq1d 2507 . . . . . . 7 ((𝑥 = [⟨𝐴, 𝐵⟩] ~R𝑦 = [⟨𝐶, 𝐷⟩] ~R𝑧 = [⟨(𝐴 +P 𝐶), (𝐵 +P 𝐷)⟩] ~R ) → (𝑦 = [⟨𝑢, 𝑡⟩] ~R ↔ [⟨𝐶, 𝐷⟩] ~R = [⟨𝑢, 𝑡⟩] ~R ))
4845, 47anbi12d 734 . . . . . 6 ((𝑥 = [⟨𝐴, 𝐵⟩] ~R𝑦 = [⟨𝐶, 𝐷⟩] ~R𝑧 = [⟨(𝐴 +P 𝐶), (𝐵 +P 𝐷)⟩] ~R ) → ((𝑥 = [⟨𝑤, 𝑣⟩] ~R𝑦 = [⟨𝑢, 𝑡⟩] ~R ) ↔ ([⟨𝐴, 𝐵⟩] ~R = [⟨𝑤, 𝑣⟩] ~R ∧ [⟨𝐶, 𝐷⟩] ~R = [⟨𝑢, 𝑡⟩] ~R )))
49 simp3 1046 . . . . . . 7 ((𝑥 = [⟨𝐴, 𝐵⟩] ~R𝑦 = [⟨𝐶, 𝐷⟩] ~R𝑧 = [⟨(𝐴 +P 𝐶), (𝐵 +P 𝐷)⟩] ~R ) → 𝑧 = [⟨(𝐴 +P 𝐶), (𝐵 +P 𝐷)⟩] ~R )
5049eqeq1d 2507 . . . . . 6 ((𝑥 = [⟨𝐴, 𝐵⟩] ~R𝑦 = [⟨𝐶, 𝐷⟩] ~R𝑧 = [⟨(𝐴 +P 𝐶), (𝐵 +P 𝐷)⟩] ~R ) → (𝑧 = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R ↔ [⟨(𝐴 +P 𝐶), (𝐵 +P 𝐷)⟩] ~R = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R ))
5148, 50anbi12d 734 . . . . 5 ((𝑥 = [⟨𝐴, 𝐵⟩] ~R𝑦 = [⟨𝐶, 𝐷⟩] ~R𝑧 = [⟨(𝐴 +P 𝐶), (𝐵 +P 𝐷)⟩] ~R ) → (((𝑥 = [⟨𝑤, 𝑣⟩] ~R𝑦 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑧 = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R ) ↔ (([⟨𝐴, 𝐵⟩] ~R = [⟨𝑤, 𝑣⟩] ~R ∧ [⟨𝐶, 𝐷⟩] ~R = [⟨𝑢, 𝑡⟩] ~R ) ∧ [⟨(𝐴 +P 𝐶), (𝐵 +P 𝐷)⟩] ~R = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R )))
52514exbidv 1803 . . . 4 ((𝑥 = [⟨𝐴, 𝐵⟩] ~R𝑦 = [⟨𝐶, 𝐷⟩] ~R𝑧 = [⟨(𝐴 +P 𝐶), (𝐵 +P 𝐷)⟩] ~R ) → (∃𝑤𝑣𝑢𝑡((𝑥 = [⟨𝑤, 𝑣⟩] ~R𝑦 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑧 = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R ) ↔ ∃𝑤𝑣𝑢𝑡(([⟨𝐴, 𝐵⟩] ~R = [⟨𝑤, 𝑣⟩] ~R ∧ [⟨𝐶, 𝐷⟩] ~R = [⟨𝑢, 𝑡⟩] ~R ) ∧ [⟨(𝐴 +P 𝐶), (𝐵 +P 𝐷)⟩] ~R = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R )))
53 addsrmo 9582 . . . 4 ((𝑥 ∈ ((P × P) / ~R ) ∧ 𝑦 ∈ ((P × P) / ~R )) → ∃*𝑧𝑤𝑣𝑢𝑡((𝑥 = [⟨𝑤, 𝑣⟩] ~R𝑦 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑧 = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R ))
54 df-plr 9567 . . . . 5 +R = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥R𝑦R) ∧ ∃𝑤𝑣𝑢𝑡((𝑥 = [⟨𝑤, 𝑣⟩] ~R𝑦 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑧 = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R ))}
55 df-nr 9566 . . . . . . . . 9 R = ((P × P) / ~R )
5655eleq2i 2575 . . . . . . . 8 (𝑥R𝑥 ∈ ((P × P) / ~R ))
5755eleq2i 2575 . . . . . . . 8 (𝑦R𝑦 ∈ ((P × P) / ~R ))
5856, 57anbi12i 720 . . . . . . 7 ((𝑥R𝑦R) ↔ (𝑥 ∈ ((P × P) / ~R ) ∧ 𝑦 ∈ ((P × P) / ~R )))
5958anbi1i 718 . . . . . 6 (((𝑥R𝑦R) ∧ ∃𝑤𝑣𝑢𝑡((𝑥 = [⟨𝑤, 𝑣⟩] ~R𝑦 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑧 = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R )) ↔ ((𝑥 ∈ ((P × P) / ~R ) ∧ 𝑦 ∈ ((P × P) / ~R )) ∧ ∃𝑤𝑣𝑢𝑡((𝑥 = [⟨𝑤, 𝑣⟩] ~R𝑦 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑧 = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R )))
6059oprabbii 6421 . . . . 5 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥R𝑦R) ∧ ∃𝑤𝑣𝑢𝑡((𝑥 = [⟨𝑤, 𝑣⟩] ~R𝑦 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑧 = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R ))} = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ ((P × P) / ~R ) ∧ 𝑦 ∈ ((P × P) / ~R )) ∧ ∃𝑤𝑣𝑢𝑡((𝑥 = [⟨𝑤, 𝑣⟩] ~R𝑦 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑧 = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R ))}
6154, 60eqtri 2527 . . . 4 +R = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ ((P × P) / ~R ) ∧ 𝑦 ∈ ((P × P) / ~R )) ∧ ∃𝑤𝑣𝑢𝑡((𝑥 = [⟨𝑤, 𝑣⟩] ~R𝑦 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑧 = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R ))}
6252, 53, 61ovig 6493 . . 3 (([⟨𝐴, 𝐵⟩] ~R ∈ ((P × P) / ~R ) ∧ [⟨𝐶, 𝐷⟩] ~R ∈ ((P × P) / ~R ) ∧ [⟨(𝐴 +P 𝐶), (𝐵 +P 𝐷)⟩] ~R ∈ V) → (∃𝑤𝑣𝑢𝑡(([⟨𝐴, 𝐵⟩] ~R = [⟨𝑤, 𝑣⟩] ~R ∧ [⟨𝐶, 𝐷⟩] ~R = [⟨𝑢, 𝑡⟩] ~R ) ∧ [⟨(𝐴 +P 𝐶), (𝐵 +P 𝐷)⟩] ~R = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R ) → ([⟨𝐴, 𝐵⟩] ~R +R [⟨𝐶, 𝐷⟩] ~R ) = [⟨(𝐴 +P 𝐶), (𝐵 +P 𝐷)⟩] ~R ))
6343, 62mp3an3 1395 . 2 (([⟨𝐴, 𝐵⟩] ~R ∈ ((P × P) / ~R ) ∧ [⟨𝐶, 𝐷⟩] ~R ∈ ((P × P) / ~R )) → (∃𝑤𝑣𝑢𝑡(([⟨𝐴, 𝐵⟩] ~R = [⟨𝑤, 𝑣⟩] ~R ∧ [⟨𝐶, 𝐷⟩] ~R = [⟨𝑢, 𝑡⟩] ~R ) ∧ [⟨(𝐴 +P 𝐶), (𝐵 +P 𝐷)⟩] ~R = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R ) → ([⟨𝐴, 𝐵⟩] ~R +R [⟨𝐶, 𝐷⟩] ~R ) = [⟨(𝐴 +P 𝐶), (𝐵 +P 𝐷)⟩] ~R ))
648, 41, 63sylc 62 1 (((𝐴P𝐵P) ∧ (𝐶P𝐷P)) → ([⟨𝐴, 𝐵⟩] ~R +R [⟨𝐶, 𝐷⟩] ~R ) = [⟨(𝐴 +P 𝐶), (𝐵 +P 𝐷)⟩] ~R )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 378  w3a 1021   = wceq 1468  wex 1692  wcel 1937  Vcvv 3066  cop 4001   × cxp 4878  (class class class)co 6363  {coprab 6364  [cec 7438   / cqs 7439  Pcnp 9369   +P cpp 9371   ~R cer 9374  Rcnr 9375   +R cplr 9379
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1698  ax-4 1711  ax-5 1789  ax-6 1836  ax-7 1883  ax-8 1939  ax-9 1946  ax-10 1965  ax-11 1970  ax-12 1983  ax-13 2137  ax-ext 2485  ax-sep 4558  ax-nul 4567  ax-pow 4619  ax-pr 4680  ax-un 6659  ax-inf2 8231
This theorem depends on definitions:  df-bi 192  df-or 379  df-an 380  df-3or 1022  df-3an 1023  df-tru 1471  df-ex 1693  df-nf 1697  df-sb 1829  df-eu 2357  df-mo 2358  df-clab 2492  df-cleq 2498  df-clel 2501  df-nfc 2635  df-ne 2677  df-ral 2796  df-rex 2797  df-reu 2798  df-rmo 2799  df-rab 2800  df-v 3068  df-sbc 3292  df-csb 3386  df-dif 3429  df-un 3431  df-in 3433  df-ss 3440  df-pss 3442  df-nul 3758  df-if 3909  df-pw 3980  df-sn 3996  df-pr 3998  df-tp 4000  df-op 4002  df-uni 4229  df-int 4265  df-iun 4309  df-br 4435  df-opab 4494  df-mpt 4495  df-tr 4531  df-eprel 4791  df-id 4795  df-po 4801  df-so 4802  df-fr 4839  df-we 4841  df-xp 4886  df-rel 4887  df-cnv 4888  df-co 4889  df-dm 4890  df-rn 4891  df-res 4892  df-ima 4893  df-pred 5431  df-ord 5477  df-on 5478  df-lim 5479  df-suc 5480  df-iota 5597  df-fun 5635  df-fn 5636  df-f 5637  df-f1 5638  df-fo 5639  df-f1o 5640  df-fv 5641  df-ov 6366  df-oprab 6367  df-mpt2 6368  df-om 6770  df-1st 6870  df-2nd 6871  df-wrecs 7105  df-recs 7167  df-rdg 7205  df-1o 7259  df-oadd 7263  df-omul 7264  df-er 7440  df-ec 7442  df-qs 7446  df-ni 9382  df-pli 9383  df-mi 9384  df-lti 9385  df-plpq 9418  df-mpq 9419  df-ltpq 9420  df-enq 9421  df-nq 9422  df-erq 9423  df-plq 9424  df-mq 9425  df-1nq 9426  df-rq 9427  df-ltnq 9428  df-np 9491  df-plp 9493  df-ltp 9495  df-enr 9565  df-nr 9566  df-plr 9567
This theorem is referenced by:  addclsr  9592  addcomsr  9596  addasssr  9597  distrsr  9600  m1p1sr  9601  0idsr  9606  ltasr  9609
  Copyright terms: Public domain W3C validator