![]() |
Mathbox for Andrew Salmon |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > addrcom | Structured version Visualization version GIF version |
Description: Vector addition is commutative. (Contributed by Andrew Salmon, 28-Jan-2012.) |
Ref | Expression |
---|---|
addrcom | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴+𝑟𝐵) = (𝐵+𝑟𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | addrfn 39095 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴+𝑟𝐵) Fn ℝ) | |
2 | addrfn 39095 | . . 3 ⊢ ((𝐵 ∈ 𝐷 ∧ 𝐴 ∈ 𝐶) → (𝐵+𝑟𝐴) Fn ℝ) | |
3 | 2 | ancoms 468 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐵+𝑟𝐴) Fn ℝ) |
4 | addcomgi 39079 | . . . . . 6 ⊢ ((𝐴‘𝑥) + (𝐵‘𝑥)) = ((𝐵‘𝑥) + (𝐴‘𝑥)) | |
5 | addrfv 39092 | . . . . . 6 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ 𝑥 ∈ ℝ) → ((𝐴+𝑟𝐵)‘𝑥) = ((𝐴‘𝑥) + (𝐵‘𝑥))) | |
6 | addrfv 39092 | . . . . . . 7 ⊢ ((𝐵 ∈ 𝐷 ∧ 𝐴 ∈ 𝐶 ∧ 𝑥 ∈ ℝ) → ((𝐵+𝑟𝐴)‘𝑥) = ((𝐵‘𝑥) + (𝐴‘𝑥))) | |
7 | 6 | 3com12 1117 | . . . . . 6 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ 𝑥 ∈ ℝ) → ((𝐵+𝑟𝐴)‘𝑥) = ((𝐵‘𝑥) + (𝐴‘𝑥))) |
8 | 4, 5, 7 | 3eqtr4a 2784 | . . . . 5 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ 𝑥 ∈ ℝ) → ((𝐴+𝑟𝐵)‘𝑥) = ((𝐵+𝑟𝐴)‘𝑥)) |
9 | 8 | 3expia 1114 | . . . 4 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝑥 ∈ ℝ → ((𝐴+𝑟𝐵)‘𝑥) = ((𝐵+𝑟𝐴)‘𝑥))) |
10 | 9 | ralrimiv 3067 | . . 3 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → ∀𝑥 ∈ ℝ ((𝐴+𝑟𝐵)‘𝑥) = ((𝐵+𝑟𝐴)‘𝑥)) |
11 | eqfnfv 6426 | . . 3 ⊢ (((𝐴+𝑟𝐵) Fn ℝ ∧ (𝐵+𝑟𝐴) Fn ℝ) → ((𝐴+𝑟𝐵) = (𝐵+𝑟𝐴) ↔ ∀𝑥 ∈ ℝ ((𝐴+𝑟𝐵)‘𝑥) = ((𝐵+𝑟𝐴)‘𝑥))) | |
12 | 10, 11 | syl5ibrcom 237 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (((𝐴+𝑟𝐵) Fn ℝ ∧ (𝐵+𝑟𝐴) Fn ℝ) → (𝐴+𝑟𝐵) = (𝐵+𝑟𝐴))) |
13 | 1, 3, 12 | mp2and 717 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴+𝑟𝐵) = (𝐵+𝑟𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∧ w3a 1072 = wceq 1596 ∈ wcel 2103 ∀wral 3014 Fn wfn 5996 ‘cfv 6001 (class class class)co 6765 ℝcr 10048 + caddc 10052 +𝑟cplusr 39080 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1835 ax-4 1850 ax-5 1952 ax-6 2018 ax-7 2054 ax-8 2105 ax-9 2112 ax-10 2132 ax-11 2147 ax-12 2160 ax-13 2355 ax-ext 2704 ax-rep 4879 ax-sep 4889 ax-nul 4897 ax-pow 4948 ax-pr 5011 ax-un 7066 ax-cnex 10105 ax-resscn 10106 ax-1cn 10107 ax-icn 10108 ax-addcl 10109 ax-addrcl 10110 ax-mulcl 10111 ax-mulrcl 10112 ax-mulcom 10113 ax-addass 10114 ax-mulass 10115 ax-distr 10116 ax-i2m1 10117 ax-1ne0 10118 ax-1rid 10119 ax-rnegex 10120 ax-rrecex 10121 ax-cnre 10122 ax-pre-lttri 10123 ax-pre-lttrn 10124 ax-pre-ltadd 10125 ax-addf 10128 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1599 df-ex 1818 df-nf 1823 df-sb 2011 df-eu 2575 df-mo 2576 df-clab 2711 df-cleq 2717 df-clel 2720 df-nfc 2855 df-ne 2897 df-nel 3000 df-ral 3019 df-rex 3020 df-reu 3021 df-rab 3023 df-v 3306 df-sbc 3542 df-csb 3640 df-dif 3683 df-un 3685 df-in 3687 df-ss 3694 df-nul 4024 df-if 4195 df-pw 4268 df-sn 4286 df-pr 4288 df-op 4292 df-uni 4545 df-iun 4630 df-br 4761 df-opab 4821 df-mpt 4838 df-id 5128 df-po 5139 df-so 5140 df-xp 5224 df-rel 5225 df-cnv 5226 df-co 5227 df-dm 5228 df-rn 5229 df-res 5230 df-ima 5231 df-iota 5964 df-fun 6003 df-fn 6004 df-f 6005 df-f1 6006 df-fo 6007 df-f1o 6008 df-fv 6009 df-ov 6768 df-oprab 6769 df-mpt2 6770 df-er 7862 df-en 8073 df-dom 8074 df-sdom 8075 df-pnf 10189 df-mnf 10190 df-ltxr 10192 df-addr 39086 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |