Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  addlimc Structured version   Visualization version   GIF version

Theorem addlimc 40198
Description: Sum of two limits. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
addlimc.f 𝐹 = (𝑥𝐴𝐵)
addlimc.g 𝐺 = (𝑥𝐴𝐶)
addlimc.h 𝐻 = (𝑥𝐴 ↦ (𝐵 + 𝐶))
addlimc.b ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
addlimc.c ((𝜑𝑥𝐴) → 𝐶 ∈ ℂ)
addlimc.e (𝜑𝐸 ∈ (𝐹 lim 𝐷))
addlimc.i (𝜑𝐼 ∈ (𝐺 lim 𝐷))
Assertion
Ref Expression
addlimc (𝜑 → (𝐸 + 𝐼) ∈ (𝐻 lim 𝐷))
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)   𝐷(𝑥)   𝐸(𝑥)   𝐹(𝑥)   𝐺(𝑥)   𝐻(𝑥)   𝐼(𝑥)

Proof of Theorem addlimc
Dummy variables 𝑎 𝑏 𝑣 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 limccl 23684 . . . 4 (𝐹 lim 𝐷) ⊆ ℂ
2 addlimc.e . . . 4 (𝜑𝐸 ∈ (𝐹 lim 𝐷))
31, 2sseldi 3634 . . 3 (𝜑𝐸 ∈ ℂ)
4 limccl 23684 . . . 4 (𝐺 lim 𝐷) ⊆ ℂ
5 addlimc.i . . . 4 (𝜑𝐼 ∈ (𝐺 lim 𝐷))
64, 5sseldi 3634 . . 3 (𝜑𝐼 ∈ ℂ)
73, 6addcld 10097 . 2 (𝜑 → (𝐸 + 𝐼) ∈ ℂ)
8 addlimc.b . . . . . . . . . 10 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
9 addlimc.f . . . . . . . . . 10 𝐹 = (𝑥𝐴𝐵)
108, 9fmptd 6425 . . . . . . . . 9 (𝜑𝐹:𝐴⟶ℂ)
119, 8, 2limcmptdm 40185 . . . . . . . . 9 (𝜑𝐴 ⊆ ℂ)
12 limcrcl 23683 . . . . . . . . . . 11 (𝐸 ∈ (𝐹 lim 𝐷) → (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ ∧ 𝐷 ∈ ℂ))
132, 12syl 17 . . . . . . . . . 10 (𝜑 → (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ ∧ 𝐷 ∈ ℂ))
1413simp3d 1095 . . . . . . . . 9 (𝜑𝐷 ∈ ℂ)
1510, 11, 14ellimc3 23688 . . . . . . . 8 (𝜑 → (𝐸 ∈ (𝐹 lim 𝐷) ↔ (𝐸 ∈ ℂ ∧ ∀𝑧 ∈ ℝ+𝑎 ∈ ℝ+𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < 𝑧))))
162, 15mpbid 222 . . . . . . 7 (𝜑 → (𝐸 ∈ ℂ ∧ ∀𝑧 ∈ ℝ+𝑎 ∈ ℝ+𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < 𝑧)))
1716simprd 478 . . . . . 6 (𝜑 → ∀𝑧 ∈ ℝ+𝑎 ∈ ℝ+𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < 𝑧))
18 rphalfcl 11896 . . . . . 6 (𝑦 ∈ ℝ+ → (𝑦 / 2) ∈ ℝ+)
19 breq2 4689 . . . . . . . . 9 (𝑧 = (𝑦 / 2) → ((abs‘((𝐹𝑣) − 𝐸)) < 𝑧 ↔ (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)))
2019imbi2d 329 . . . . . . . 8 (𝑧 = (𝑦 / 2) → (((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < 𝑧) ↔ ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2))))
2120rexralbidv 3087 . . . . . . 7 (𝑧 = (𝑦 / 2) → (∃𝑎 ∈ ℝ+𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < 𝑧) ↔ ∃𝑎 ∈ ℝ+𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2))))
2221rspccva 3339 . . . . . 6 ((∀𝑧 ∈ ℝ+𝑎 ∈ ℝ+𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < 𝑧) ∧ (𝑦 / 2) ∈ ℝ+) → ∃𝑎 ∈ ℝ+𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)))
2317, 18, 22syl2an 493 . . . . 5 ((𝜑𝑦 ∈ ℝ+) → ∃𝑎 ∈ ℝ+𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)))
24 addlimc.c . . . . . . . . . 10 ((𝜑𝑥𝐴) → 𝐶 ∈ ℂ)
25 addlimc.g . . . . . . . . . 10 𝐺 = (𝑥𝐴𝐶)
2624, 25fmptd 6425 . . . . . . . . 9 (𝜑𝐺:𝐴⟶ℂ)
2726, 11, 14ellimc3 23688 . . . . . . . 8 (𝜑 → (𝐼 ∈ (𝐺 lim 𝐷) ↔ (𝐼 ∈ ℂ ∧ ∀𝑧 ∈ ℝ+𝑏 ∈ ℝ+𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < 𝑧))))
285, 27mpbid 222 . . . . . . 7 (𝜑 → (𝐼 ∈ ℂ ∧ ∀𝑧 ∈ ℝ+𝑏 ∈ ℝ+𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < 𝑧)))
2928simprd 478 . . . . . 6 (𝜑 → ∀𝑧 ∈ ℝ+𝑏 ∈ ℝ+𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < 𝑧))
30 breq2 4689 . . . . . . . . 9 (𝑧 = (𝑦 / 2) → ((abs‘((𝐺𝑣) − 𝐼)) < 𝑧 ↔ (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))
3130imbi2d 329 . . . . . . . 8 (𝑧 = (𝑦 / 2) → (((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < 𝑧) ↔ ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2))))
3231rexralbidv 3087 . . . . . . 7 (𝑧 = (𝑦 / 2) → (∃𝑏 ∈ ℝ+𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < 𝑧) ↔ ∃𝑏 ∈ ℝ+𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2))))
3332rspccva 3339 . . . . . 6 ((∀𝑧 ∈ ℝ+𝑏 ∈ ℝ+𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < 𝑧) ∧ (𝑦 / 2) ∈ ℝ+) → ∃𝑏 ∈ ℝ+𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))
3429, 18, 33syl2an 493 . . . . 5 ((𝜑𝑦 ∈ ℝ+) → ∃𝑏 ∈ ℝ+𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))
35 reeanv 3136 . . . . 5 (∃𝑎 ∈ ℝ+𝑏 ∈ ℝ+ (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2))) ↔ (∃𝑎 ∈ ℝ+𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∃𝑏 ∈ ℝ+𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2))))
3623, 34, 35sylanbrc 699 . . . 4 ((𝜑𝑦 ∈ ℝ+) → ∃𝑎 ∈ ℝ+𝑏 ∈ ℝ+ (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2))))
37 ifcl 4163 . . . . . . . 8 ((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) → if(𝑎𝑏, 𝑎, 𝑏) ∈ ℝ+)
38373ad2ant2 1103 . . . . . . 7 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))) → if(𝑎𝑏, 𝑎, 𝑏) ∈ ℝ+)
39 nfv 1883 . . . . . . . . 9 𝑣(𝜑𝑦 ∈ ℝ+)
40 nfv 1883 . . . . . . . . 9 𝑣(𝑎 ∈ ℝ+𝑏 ∈ ℝ+)
41 nfra1 2970 . . . . . . . . . 10 𝑣𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2))
42 nfra1 2970 . . . . . . . . . 10 𝑣𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2))
4341, 42nfan 1868 . . . . . . . . 9 𝑣(∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))
4439, 40, 43nf3an 1871 . . . . . . . 8 𝑣((𝜑𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2))))
45 simp11l 1192 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))) ∧ 𝑣𝐴 ∧ (𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < if(𝑎𝑏, 𝑎, 𝑏))) → 𝜑)
46 simp2 1082 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))) ∧ 𝑣𝐴 ∧ (𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < if(𝑎𝑏, 𝑎, 𝑏))) → 𝑣𝐴)
4745, 46jca 553 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))) ∧ 𝑣𝐴 ∧ (𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < if(𝑎𝑏, 𝑎, 𝑏))) → (𝜑𝑣𝐴))
48 rpre 11877 . . . . . . . . . . . . . 14 (𝑦 ∈ ℝ+𝑦 ∈ ℝ)
4948adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ ℝ+) → 𝑦 ∈ ℝ)
50493ad2ant1 1102 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))) → 𝑦 ∈ ℝ)
51503ad2ant1 1102 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))) ∧ 𝑣𝐴 ∧ (𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < if(𝑎𝑏, 𝑎, 𝑏))) → 𝑦 ∈ ℝ)
52 simp13l 1196 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))) ∧ 𝑣𝐴 ∧ (𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < if(𝑎𝑏, 𝑎, 𝑏))) → ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)))
53 simp3l 1109 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))) ∧ 𝑣𝐴 ∧ (𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < if(𝑎𝑏, 𝑎, 𝑏))) → 𝑣𝐷)
5411sselda 3636 . . . . . . . . . . . . . . . . 17 ((𝜑𝑣𝐴) → 𝑣 ∈ ℂ)
5545, 46, 54syl2anc 694 . . . . . . . . . . . . . . . 16 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))) ∧ 𝑣𝐴 ∧ (𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < if(𝑎𝑏, 𝑎, 𝑏))) → 𝑣 ∈ ℂ)
5645, 14syl 17 . . . . . . . . . . . . . . . 16 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))) ∧ 𝑣𝐴 ∧ (𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < if(𝑎𝑏, 𝑎, 𝑏))) → 𝐷 ∈ ℂ)
5755, 56subcld 10430 . . . . . . . . . . . . . . 15 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))) ∧ 𝑣𝐴 ∧ (𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < if(𝑎𝑏, 𝑎, 𝑏))) → (𝑣𝐷) ∈ ℂ)
5857abscld 14219 . . . . . . . . . . . . . 14 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))) ∧ 𝑣𝐴 ∧ (𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < if(𝑎𝑏, 𝑎, 𝑏))) → (abs‘(𝑣𝐷)) ∈ ℝ)
5938rpred 11910 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))) → if(𝑎𝑏, 𝑎, 𝑏) ∈ ℝ)
60593ad2ant1 1102 . . . . . . . . . . . . . 14 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))) ∧ 𝑣𝐴 ∧ (𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < if(𝑎𝑏, 𝑎, 𝑏))) → if(𝑎𝑏, 𝑎, 𝑏) ∈ ℝ)
61 simpl 472 . . . . . . . . . . . . . . . . 17 ((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) → 𝑎 ∈ ℝ+)
6261rpred 11910 . . . . . . . . . . . . . . . 16 ((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) → 𝑎 ∈ ℝ)
63623ad2ant2 1103 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))) → 𝑎 ∈ ℝ)
64633ad2ant1 1102 . . . . . . . . . . . . . 14 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))) ∧ 𝑣𝐴 ∧ (𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < if(𝑎𝑏, 𝑎, 𝑏))) → 𝑎 ∈ ℝ)
65 simp3r 1110 . . . . . . . . . . . . . 14 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))) ∧ 𝑣𝐴 ∧ (𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < if(𝑎𝑏, 𝑎, 𝑏))) → (abs‘(𝑣𝐷)) < if(𝑎𝑏, 𝑎, 𝑏))
66 simpr 476 . . . . . . . . . . . . . . . . . 18 ((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) → 𝑏 ∈ ℝ+)
6766rpred 11910 . . . . . . . . . . . . . . . . 17 ((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) → 𝑏 ∈ ℝ)
68 min1 12058 . . . . . . . . . . . . . . . . 17 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → if(𝑎𝑏, 𝑎, 𝑏) ≤ 𝑎)
6962, 67, 68syl2anc 694 . . . . . . . . . . . . . . . 16 ((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) → if(𝑎𝑏, 𝑎, 𝑏) ≤ 𝑎)
70693ad2ant2 1103 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))) → if(𝑎𝑏, 𝑎, 𝑏) ≤ 𝑎)
71703ad2ant1 1102 . . . . . . . . . . . . . 14 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))) ∧ 𝑣𝐴 ∧ (𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < if(𝑎𝑏, 𝑎, 𝑏))) → if(𝑎𝑏, 𝑎, 𝑏) ≤ 𝑎)
7258, 60, 64, 65, 71ltletrd 10235 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))) ∧ 𝑣𝐴 ∧ (𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < if(𝑎𝑏, 𝑎, 𝑏))) → (abs‘(𝑣𝐷)) < 𝑎)
7353, 72jca 553 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))) ∧ 𝑣𝐴 ∧ (𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < if(𝑎𝑏, 𝑎, 𝑏))) → (𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎))
74 rsp 2958 . . . . . . . . . . . 12 (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) → (𝑣𝐴 → ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2))))
7552, 46, 73, 74syl3c 66 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))) ∧ 𝑣𝐴 ∧ (𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < if(𝑎𝑏, 𝑎, 𝑏))) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2))
7647, 51, 75jca31 556 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))) ∧ 𝑣𝐴 ∧ (𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < if(𝑎𝑏, 𝑎, 𝑏))) → (((𝜑𝑣𝐴) ∧ 𝑦 ∈ ℝ) ∧ (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)))
77 simp13r 1197 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))) ∧ 𝑣𝐴 ∧ (𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < if(𝑎𝑏, 𝑎, 𝑏))) → ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))
78673ad2ant2 1103 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))) → 𝑏 ∈ ℝ)
79783ad2ant1 1102 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))) ∧ 𝑣𝐴 ∧ (𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < if(𝑎𝑏, 𝑎, 𝑏))) → 𝑏 ∈ ℝ)
80 min2 12059 . . . . . . . . . . . . . . . 16 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → if(𝑎𝑏, 𝑎, 𝑏) ≤ 𝑏)
8162, 67, 80syl2anc 694 . . . . . . . . . . . . . . 15 ((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) → if(𝑎𝑏, 𝑎, 𝑏) ≤ 𝑏)
82813ad2ant2 1103 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))) → if(𝑎𝑏, 𝑎, 𝑏) ≤ 𝑏)
83823ad2ant1 1102 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))) ∧ 𝑣𝐴 ∧ (𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < if(𝑎𝑏, 𝑎, 𝑏))) → if(𝑎𝑏, 𝑎, 𝑏) ≤ 𝑏)
8458, 60, 79, 65, 83ltletrd 10235 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))) ∧ 𝑣𝐴 ∧ (𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < if(𝑎𝑏, 𝑎, 𝑏))) → (abs‘(𝑣𝐷)) < 𝑏)
8553, 84jca 553 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))) ∧ 𝑣𝐴 ∧ (𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < if(𝑎𝑏, 𝑎, 𝑏))) → (𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏))
86 rsp 2958 . . . . . . . . . . 11 (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)) → (𝑣𝐴 → ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2))))
8777, 46, 85, 86syl3c 66 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))) ∧ 𝑣𝐴 ∧ (𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < if(𝑎𝑏, 𝑎, 𝑏))) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2))
888, 24addcld 10097 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐴) → (𝐵 + 𝐶) ∈ ℂ)
89 addlimc.h . . . . . . . . . . . . . . . 16 𝐻 = (𝑥𝐴 ↦ (𝐵 + 𝐶))
9088, 89fmptd 6425 . . . . . . . . . . . . . . 15 (𝜑𝐻:𝐴⟶ℂ)
9190ffvelrnda 6399 . . . . . . . . . . . . . 14 ((𝜑𝑣𝐴) → (𝐻𝑣) ∈ ℂ)
9291ad3antrrr 766 . . . . . . . . . . . . 13 (((((𝜑𝑣𝐴) ∧ 𝑦 ∈ ℝ) ∧ (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)) → (𝐻𝑣) ∈ ℂ)
93 simp-4l 823 . . . . . . . . . . . . . 14 (((((𝜑𝑣𝐴) ∧ 𝑦 ∈ ℝ) ∧ (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)) → 𝜑)
9493, 7syl 17 . . . . . . . . . . . . 13 (((((𝜑𝑣𝐴) ∧ 𝑦 ∈ ℝ) ∧ (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)) → (𝐸 + 𝐼) ∈ ℂ)
9592, 94subcld 10430 . . . . . . . . . . . 12 (((((𝜑𝑣𝐴) ∧ 𝑦 ∈ ℝ) ∧ (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)) → ((𝐻𝑣) − (𝐸 + 𝐼)) ∈ ℂ)
9695abscld 14219 . . . . . . . . . . 11 (((((𝜑𝑣𝐴) ∧ 𝑦 ∈ ℝ) ∧ (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)) → (abs‘((𝐻𝑣) − (𝐸 + 𝐼))) ∈ ℝ)
9710ffvelrnda 6399 . . . . . . . . . . . . . . 15 ((𝜑𝑣𝐴) → (𝐹𝑣) ∈ ℂ)
9897ad3antrrr 766 . . . . . . . . . . . . . 14 (((((𝜑𝑣𝐴) ∧ 𝑦 ∈ ℝ) ∧ (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)) → (𝐹𝑣) ∈ ℂ)
9993, 3syl 17 . . . . . . . . . . . . . 14 (((((𝜑𝑣𝐴) ∧ 𝑦 ∈ ℝ) ∧ (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)) → 𝐸 ∈ ℂ)
10098, 99subcld 10430 . . . . . . . . . . . . 13 (((((𝜑𝑣𝐴) ∧ 𝑦 ∈ ℝ) ∧ (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)) → ((𝐹𝑣) − 𝐸) ∈ ℂ)
101100abscld 14219 . . . . . . . . . . . 12 (((((𝜑𝑣𝐴) ∧ 𝑦 ∈ ℝ) ∧ (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)) → (abs‘((𝐹𝑣) − 𝐸)) ∈ ℝ)
10226ffvelrnda 6399 . . . . . . . . . . . . . . 15 ((𝜑𝑣𝐴) → (𝐺𝑣) ∈ ℂ)
103102ad3antrrr 766 . . . . . . . . . . . . . 14 (((((𝜑𝑣𝐴) ∧ 𝑦 ∈ ℝ) ∧ (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)) → (𝐺𝑣) ∈ ℂ)
10493, 6syl 17 . . . . . . . . . . . . . 14 (((((𝜑𝑣𝐴) ∧ 𝑦 ∈ ℝ) ∧ (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)) → 𝐼 ∈ ℂ)
105103, 104subcld 10430 . . . . . . . . . . . . 13 (((((𝜑𝑣𝐴) ∧ 𝑦 ∈ ℝ) ∧ (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)) → ((𝐺𝑣) − 𝐼) ∈ ℂ)
106105abscld 14219 . . . . . . . . . . . 12 (((((𝜑𝑣𝐴) ∧ 𝑦 ∈ ℝ) ∧ (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)) → (abs‘((𝐺𝑣) − 𝐼)) ∈ ℝ)
107101, 106readdcld 10107 . . . . . . . . . . 11 (((((𝜑𝑣𝐴) ∧ 𝑦 ∈ ℝ) ∧ (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)) → ((abs‘((𝐹𝑣) − 𝐸)) + (abs‘((𝐺𝑣) − 𝐼))) ∈ ℝ)
108 simpllr 815 . . . . . . . . . . 11 (((((𝜑𝑣𝐴) ∧ 𝑦 ∈ ℝ) ∧ (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)) → 𝑦 ∈ ℝ)
109 nfv 1883 . . . . . . . . . . . . . . . . . 18 𝑥(𝜑𝑣𝐴)
110 nfmpt1 4780 . . . . . . . . . . . . . . . . . . . . 21 𝑥(𝑥𝐴 ↦ (𝐵 + 𝐶))
11189, 110nfcxfr 2791 . . . . . . . . . . . . . . . . . . . 20 𝑥𝐻
112 nfcv 2793 . . . . . . . . . . . . . . . . . . . 20 𝑥𝑣
113111, 112nffv 6236 . . . . . . . . . . . . . . . . . . 19 𝑥(𝐻𝑣)
114 nfmpt1 4780 . . . . . . . . . . . . . . . . . . . . . 22 𝑥(𝑥𝐴𝐵)
1159, 114nfcxfr 2791 . . . . . . . . . . . . . . . . . . . . 21 𝑥𝐹
116115, 112nffv 6236 . . . . . . . . . . . . . . . . . . . 20 𝑥(𝐹𝑣)
117 nfcv 2793 . . . . . . . . . . . . . . . . . . . 20 𝑥 +
118 nfmpt1 4780 . . . . . . . . . . . . . . . . . . . . . 22 𝑥(𝑥𝐴𝐶)
11925, 118nfcxfr 2791 . . . . . . . . . . . . . . . . . . . . 21 𝑥𝐺
120119, 112nffv 6236 . . . . . . . . . . . . . . . . . . . 20 𝑥(𝐺𝑣)
121116, 117, 120nfov 6716 . . . . . . . . . . . . . . . . . . 19 𝑥((𝐹𝑣) + (𝐺𝑣))
122113, 121nfeq 2805 . . . . . . . . . . . . . . . . . 18 𝑥(𝐻𝑣) = ((𝐹𝑣) + (𝐺𝑣))
123109, 122nfim 1865 . . . . . . . . . . . . . . . . 17 𝑥((𝜑𝑣𝐴) → (𝐻𝑣) = ((𝐹𝑣) + (𝐺𝑣)))
124 eleq1 2718 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑣 → (𝑥𝐴𝑣𝐴))
125124anbi2d 740 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑣 → ((𝜑𝑥𝐴) ↔ (𝜑𝑣𝐴)))
126 fveq2 6229 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑣 → (𝐻𝑥) = (𝐻𝑣))
127 fveq2 6229 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑣 → (𝐹𝑥) = (𝐹𝑣))
128 fveq2 6229 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑣 → (𝐺𝑥) = (𝐺𝑣))
129127, 128oveq12d 6708 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑣 → ((𝐹𝑥) + (𝐺𝑥)) = ((𝐹𝑣) + (𝐺𝑣)))
130126, 129eqeq12d 2666 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑣 → ((𝐻𝑥) = ((𝐹𝑥) + (𝐺𝑥)) ↔ (𝐻𝑣) = ((𝐹𝑣) + (𝐺𝑣))))
131125, 130imbi12d 333 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑣 → (((𝜑𝑥𝐴) → (𝐻𝑥) = ((𝐹𝑥) + (𝐺𝑥))) ↔ ((𝜑𝑣𝐴) → (𝐻𝑣) = ((𝐹𝑣) + (𝐺𝑣)))))
132 simpr 476 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥𝐴) → 𝑥𝐴)
13389fvmpt2 6330 . . . . . . . . . . . . . . . . . . 19 ((𝑥𝐴 ∧ (𝐵 + 𝐶) ∈ ℂ) → (𝐻𝑥) = (𝐵 + 𝐶))
134132, 88, 133syl2anc 694 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥𝐴) → (𝐻𝑥) = (𝐵 + 𝐶))
1359fvmpt2 6330 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥𝐴𝐵 ∈ ℂ) → (𝐹𝑥) = 𝐵)
136132, 8, 135syl2anc 694 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥𝐴) → (𝐹𝑥) = 𝐵)
137136eqcomd 2657 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥𝐴) → 𝐵 = (𝐹𝑥))
13825fvmpt2 6330 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥𝐴𝐶 ∈ ℂ) → (𝐺𝑥) = 𝐶)
139132, 24, 138syl2anc 694 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥𝐴) → (𝐺𝑥) = 𝐶)
140139eqcomd 2657 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥𝐴) → 𝐶 = (𝐺𝑥))
141137, 140oveq12d 6708 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥𝐴) → (𝐵 + 𝐶) = ((𝐹𝑥) + (𝐺𝑥)))
142134, 141eqtrd 2685 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐴) → (𝐻𝑥) = ((𝐹𝑥) + (𝐺𝑥)))
143123, 131, 142chvar 2298 . . . . . . . . . . . . . . . 16 ((𝜑𝑣𝐴) → (𝐻𝑣) = ((𝐹𝑣) + (𝐺𝑣)))
144143ad3antrrr 766 . . . . . . . . . . . . . . 15 (((((𝜑𝑣𝐴) ∧ 𝑦 ∈ ℝ) ∧ (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)) → (𝐻𝑣) = ((𝐹𝑣) + (𝐺𝑣)))
145144oveq1d 6705 . . . . . . . . . . . . . 14 (((((𝜑𝑣𝐴) ∧ 𝑦 ∈ ℝ) ∧ (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)) → ((𝐻𝑣) − (𝐸 + 𝐼)) = (((𝐹𝑣) + (𝐺𝑣)) − (𝐸 + 𝐼)))
14698, 103, 99, 104addsub4d 10477 . . . . . . . . . . . . . 14 (((((𝜑𝑣𝐴) ∧ 𝑦 ∈ ℝ) ∧ (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)) → (((𝐹𝑣) + (𝐺𝑣)) − (𝐸 + 𝐼)) = (((𝐹𝑣) − 𝐸) + ((𝐺𝑣) − 𝐼)))
147145, 146eqtrd 2685 . . . . . . . . . . . . 13 (((((𝜑𝑣𝐴) ∧ 𝑦 ∈ ℝ) ∧ (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)) → ((𝐻𝑣) − (𝐸 + 𝐼)) = (((𝐹𝑣) − 𝐸) + ((𝐺𝑣) − 𝐼)))
148147fveq2d 6233 . . . . . . . . . . . 12 (((((𝜑𝑣𝐴) ∧ 𝑦 ∈ ℝ) ∧ (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)) → (abs‘((𝐻𝑣) − (𝐸 + 𝐼))) = (abs‘(((𝐹𝑣) − 𝐸) + ((𝐺𝑣) − 𝐼))))
149100, 105abstrid 14239 . . . . . . . . . . . 12 (((((𝜑𝑣𝐴) ∧ 𝑦 ∈ ℝ) ∧ (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)) → (abs‘(((𝐹𝑣) − 𝐸) + ((𝐺𝑣) − 𝐼))) ≤ ((abs‘((𝐹𝑣) − 𝐸)) + (abs‘((𝐺𝑣) − 𝐼))))
150148, 149eqbrtrd 4707 . . . . . . . . . . 11 (((((𝜑𝑣𝐴) ∧ 𝑦 ∈ ℝ) ∧ (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)) → (abs‘((𝐻𝑣) − (𝐸 + 𝐼))) ≤ ((abs‘((𝐹𝑣) − 𝐸)) + (abs‘((𝐺𝑣) − 𝐼))))
151 simplr 807 . . . . . . . . . . . 12 (((((𝜑𝑣𝐴) ∧ 𝑦 ∈ ℝ) ∧ (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2))
152 simpr 476 . . . . . . . . . . . 12 (((((𝜑𝑣𝐴) ∧ 𝑦 ∈ ℝ) ∧ (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2))
153101, 106, 108, 151, 152lt2halvesd 11318 . . . . . . . . . . 11 (((((𝜑𝑣𝐴) ∧ 𝑦 ∈ ℝ) ∧ (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)) → ((abs‘((𝐹𝑣) − 𝐸)) + (abs‘((𝐺𝑣) − 𝐼))) < 𝑦)
15496, 107, 108, 150, 153lelttrd 10233 . . . . . . . . . 10 (((((𝜑𝑣𝐴) ∧ 𝑦 ∈ ℝ) ∧ (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)) → (abs‘((𝐻𝑣) − (𝐸 + 𝐼))) < 𝑦)
15576, 87, 154syl2anc 694 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))) ∧ 𝑣𝐴 ∧ (𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < if(𝑎𝑏, 𝑎, 𝑏))) → (abs‘((𝐻𝑣) − (𝐸 + 𝐼))) < 𝑦)
1561553exp 1283 . . . . . . . 8 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))) → (𝑣𝐴 → ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < if(𝑎𝑏, 𝑎, 𝑏)) → (abs‘((𝐻𝑣) − (𝐸 + 𝐼))) < 𝑦)))
15744, 156ralrimi 2986 . . . . . . 7 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))) → ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < if(𝑎𝑏, 𝑎, 𝑏)) → (abs‘((𝐻𝑣) − (𝐸 + 𝐼))) < 𝑦))
158 breq2 4689 . . . . . . . . . . 11 (𝑤 = if(𝑎𝑏, 𝑎, 𝑏) → ((abs‘(𝑣𝐷)) < 𝑤 ↔ (abs‘(𝑣𝐷)) < if(𝑎𝑏, 𝑎, 𝑏)))
159158anbi2d 740 . . . . . . . . . 10 (𝑤 = if(𝑎𝑏, 𝑎, 𝑏) → ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑤) ↔ (𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < if(𝑎𝑏, 𝑎, 𝑏))))
160159imbi1d 330 . . . . . . . . 9 (𝑤 = if(𝑎𝑏, 𝑎, 𝑏) → (((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑤) → (abs‘((𝐻𝑣) − (𝐸 + 𝐼))) < 𝑦) ↔ ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < if(𝑎𝑏, 𝑎, 𝑏)) → (abs‘((𝐻𝑣) − (𝐸 + 𝐼))) < 𝑦)))
161160ralbidv 3015 . . . . . . . 8 (𝑤 = if(𝑎𝑏, 𝑎, 𝑏) → (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑤) → (abs‘((𝐻𝑣) − (𝐸 + 𝐼))) < 𝑦) ↔ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < if(𝑎𝑏, 𝑎, 𝑏)) → (abs‘((𝐻𝑣) − (𝐸 + 𝐼))) < 𝑦)))
162161rspcev 3340 . . . . . . 7 ((if(𝑎𝑏, 𝑎, 𝑏) ∈ ℝ+ ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < if(𝑎𝑏, 𝑎, 𝑏)) → (abs‘((𝐻𝑣) − (𝐸 + 𝐼))) < 𝑦)) → ∃𝑤 ∈ ℝ+𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑤) → (abs‘((𝐻𝑣) − (𝐸 + 𝐼))) < 𝑦))
16338, 157, 162syl2anc 694 . . . . . 6 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))) → ∃𝑤 ∈ ℝ+𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑤) → (abs‘((𝐻𝑣) − (𝐸 + 𝐼))) < 𝑦))
1641633exp 1283 . . . . 5 ((𝜑𝑦 ∈ ℝ+) → ((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) → ((∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2))) → ∃𝑤 ∈ ℝ+𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑤) → (abs‘((𝐻𝑣) − (𝐸 + 𝐼))) < 𝑦))))
165164rexlimdvv 3066 . . . 4 ((𝜑𝑦 ∈ ℝ+) → (∃𝑎 ∈ ℝ+𝑏 ∈ ℝ+ (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2))) → ∃𝑤 ∈ ℝ+𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑤) → (abs‘((𝐻𝑣) − (𝐸 + 𝐼))) < 𝑦)))
16636, 165mpd 15 . . 3 ((𝜑𝑦 ∈ ℝ+) → ∃𝑤 ∈ ℝ+𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑤) → (abs‘((𝐻𝑣) − (𝐸 + 𝐼))) < 𝑦))
167166ralrimiva 2995 . 2 (𝜑 → ∀𝑦 ∈ ℝ+𝑤 ∈ ℝ+𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑤) → (abs‘((𝐻𝑣) − (𝐸 + 𝐼))) < 𝑦))
16890, 11, 14ellimc3 23688 . 2 (𝜑 → ((𝐸 + 𝐼) ∈ (𝐻 lim 𝐷) ↔ ((𝐸 + 𝐼) ∈ ℂ ∧ ∀𝑦 ∈ ℝ+𝑤 ∈ ℝ+𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑤) → (abs‘((𝐻𝑣) − (𝐸 + 𝐼))) < 𝑦))))
1697, 167, 168mpbir2and 977 1 (𝜑 → (𝐸 + 𝐼) ∈ (𝐻 lim 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1054   = wceq 1523  wcel 2030  wne 2823  wral 2941  wrex 2942  wss 3607  ifcif 4119   class class class wbr 4685  cmpt 4762  dom cdm 5143  wf 5922  cfv 5926  (class class class)co 6690  cc 9972  cr 9973   + caddc 9977   < clt 10112  cle 10113  cmin 10304   / cdiv 10722  2c2 11108  +crp 11870  abscabs 14018   lim climc 23671
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-map 7901  df-pm 7902  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-fi 8358  df-sup 8389  df-inf 8390  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-9 11124  df-n0 11331  df-z 11416  df-dec 11532  df-uz 11726  df-q 11827  df-rp 11871  df-xneg 11984  df-xadd 11985  df-xmul 11986  df-fz 12365  df-seq 12842  df-exp 12901  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-struct 15906  df-ndx 15907  df-slot 15908  df-base 15910  df-plusg 16001  df-mulr 16002  df-starv 16003  df-tset 16007  df-ple 16008  df-ds 16011  df-unif 16012  df-rest 16130  df-topn 16131  df-topgen 16151  df-psmet 19786  df-xmet 19787  df-met 19788  df-bl 19789  df-mopn 19790  df-cnfld 19795  df-top 20747  df-topon 20764  df-topsp 20785  df-bases 20798  df-cnp 21080  df-xms 22172  df-ms 22173  df-limc 23675
This theorem is referenced by:  sublimc  40202  reclimc  40203  fourierdlem53  40694  fourierdlem60  40701  fourierdlem61  40702
  Copyright terms: Public domain W3C validator