Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  addlimc Structured version   Visualization version   GIF version

 Description: Sum of two limits. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
addlimc.h 𝐻 = (𝑥𝐴 ↦ (𝐵 + 𝐶))
addlimc.b ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
addlimc.c ((𝜑𝑥𝐴) → 𝐶 ∈ ℂ)
addlimc.e (𝜑𝐸 ∈ (𝐹 lim 𝐷))
addlimc.i (𝜑𝐼 ∈ (𝐺 lim 𝐷))
Assertion
Ref Expression
addlimc (𝜑 → (𝐸 + 𝐼) ∈ (𝐻 lim 𝐷))
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)   𝐷(𝑥)   𝐸(𝑥)   𝐹(𝑥)   𝐺(𝑥)   𝐻(𝑥)   𝐼(𝑥)

Dummy variables 𝑎 𝑏 𝑣 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 limccl 23684 . . . 4 (𝐹 lim 𝐷) ⊆ ℂ
2 addlimc.e . . . 4 (𝜑𝐸 ∈ (𝐹 lim 𝐷))
31, 2sseldi 3634 . . 3 (𝜑𝐸 ∈ ℂ)
4 limccl 23684 . . . 4 (𝐺 lim 𝐷) ⊆ ℂ
5 addlimc.i . . . 4 (𝜑𝐼 ∈ (𝐺 lim 𝐷))
64, 5sseldi 3634 . . 3 (𝜑𝐼 ∈ ℂ)
73, 6addcld 10097 . 2 (𝜑 → (𝐸 + 𝐼) ∈ ℂ)
8 addlimc.b . . . . . . . . . 10 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
9 addlimc.f . . . . . . . . . 10 𝐹 = (𝑥𝐴𝐵)
108, 9fmptd 6425 . . . . . . . . 9 (𝜑𝐹:𝐴⟶ℂ)
119, 8, 2limcmptdm 40185 . . . . . . . . 9 (𝜑𝐴 ⊆ ℂ)
12 limcrcl 23683 . . . . . . . . . . 11 (𝐸 ∈ (𝐹 lim 𝐷) → (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ ∧ 𝐷 ∈ ℂ))
132, 12syl 17 . . . . . . . . . 10 (𝜑 → (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ ∧ 𝐷 ∈ ℂ))
1413simp3d 1095 . . . . . . . . 9 (𝜑𝐷 ∈ ℂ)
1510, 11, 14ellimc3 23688 . . . . . . . 8 (𝜑 → (𝐸 ∈ (𝐹 lim 𝐷) ↔ (𝐸 ∈ ℂ ∧ ∀𝑧 ∈ ℝ+𝑎 ∈ ℝ+𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < 𝑧))))
162, 15mpbid 222 . . . . . . 7 (𝜑 → (𝐸 ∈ ℂ ∧ ∀𝑧 ∈ ℝ+𝑎 ∈ ℝ+𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < 𝑧)))
1716simprd 478 . . . . . 6 (𝜑 → ∀𝑧 ∈ ℝ+𝑎 ∈ ℝ+𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < 𝑧))
18 rphalfcl 11896 . . . . . 6 (𝑦 ∈ ℝ+ → (𝑦 / 2) ∈ ℝ+)
19 breq2 4689 . . . . . . . . 9 (𝑧 = (𝑦 / 2) → ((abs‘((𝐹𝑣) − 𝐸)) < 𝑧 ↔ (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)))
2019imbi2d 329 . . . . . . . 8 (𝑧 = (𝑦 / 2) → (((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < 𝑧) ↔ ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2))))
2120rexralbidv 3087 . . . . . . 7 (𝑧 = (𝑦 / 2) → (∃𝑎 ∈ ℝ+𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < 𝑧) ↔ ∃𝑎 ∈ ℝ+𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2))))
2221rspccva 3339 . . . . . 6 ((∀𝑧 ∈ ℝ+𝑎 ∈ ℝ+𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < 𝑧) ∧ (𝑦 / 2) ∈ ℝ+) → ∃𝑎 ∈ ℝ+𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)))
2317, 18, 22syl2an 493 . . . . 5 ((𝜑𝑦 ∈ ℝ+) → ∃𝑎 ∈ ℝ+𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)))
24 addlimc.c . . . . . . . . . 10 ((𝜑𝑥𝐴) → 𝐶 ∈ ℂ)
25 addlimc.g . . . . . . . . . 10 𝐺 = (𝑥𝐴𝐶)
2624, 25fmptd 6425 . . . . . . . . 9 (𝜑𝐺:𝐴⟶ℂ)
2726, 11, 14ellimc3 23688 . . . . . . . 8 (𝜑 → (𝐼 ∈ (𝐺 lim 𝐷) ↔ (𝐼 ∈ ℂ ∧ ∀𝑧 ∈ ℝ+𝑏 ∈ ℝ+𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < 𝑧))))
285, 27mpbid 222 . . . . . . 7 (𝜑 → (𝐼 ∈ ℂ ∧ ∀𝑧 ∈ ℝ+𝑏 ∈ ℝ+𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < 𝑧)))
2928simprd 478 . . . . . 6 (𝜑 → ∀𝑧 ∈ ℝ+𝑏 ∈ ℝ+𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < 𝑧))
30 breq2 4689 . . . . . . . . 9 (𝑧 = (𝑦 / 2) → ((abs‘((𝐺𝑣) − 𝐼)) < 𝑧 ↔ (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))
3130imbi2d 329 . . . . . . . 8 (𝑧 = (𝑦 / 2) → (((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < 𝑧) ↔ ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2))))
3231rexralbidv 3087 . . . . . . 7 (𝑧 = (𝑦 / 2) → (∃𝑏 ∈ ℝ+𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < 𝑧) ↔ ∃𝑏 ∈ ℝ+𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2))))
3332rspccva 3339 . . . . . 6 ((∀𝑧 ∈ ℝ+𝑏 ∈ ℝ+𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < 𝑧) ∧ (𝑦 / 2) ∈ ℝ+) → ∃𝑏 ∈ ℝ+𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))
3429, 18, 33syl2an 493 . . . . 5 ((𝜑𝑦 ∈ ℝ+) → ∃𝑏 ∈ ℝ+𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))
35 reeanv 3136 . . . . 5 (∃𝑎 ∈ ℝ+𝑏 ∈ ℝ+ (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2))) ↔ (∃𝑎 ∈ ℝ+𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∃𝑏 ∈ ℝ+𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2))))
3623, 34, 35sylanbrc 699 . . . 4 ((𝜑𝑦 ∈ ℝ+) → ∃𝑎 ∈ ℝ+𝑏 ∈ ℝ+ (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2))))
37 ifcl 4163 . . . . . . . 8 ((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) → if(𝑎𝑏, 𝑎, 𝑏) ∈ ℝ+)
38373ad2ant2 1103 . . . . . . 7 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))) → if(𝑎𝑏, 𝑎, 𝑏) ∈ ℝ+)
39 nfv 1883 . . . . . . . . 9 𝑣(𝜑𝑦 ∈ ℝ+)
40 nfv 1883 . . . . . . . . 9 𝑣(𝑎 ∈ ℝ+𝑏 ∈ ℝ+)
41 nfra1 2970 . . . . . . . . . 10 𝑣𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2))
42 nfra1 2970 . . . . . . . . . 10 𝑣𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2))
4341, 42nfan 1868 . . . . . . . . 9 𝑣(∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))
4439, 40, 43nf3an 1871 . . . . . . . 8 𝑣((𝜑𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2))))
45 simp11l 1192 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))) ∧ 𝑣𝐴 ∧ (𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < if(𝑎𝑏, 𝑎, 𝑏))) → 𝜑)
46 simp2 1082 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))) ∧ 𝑣𝐴 ∧ (𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < if(𝑎𝑏, 𝑎, 𝑏))) → 𝑣𝐴)
4745, 46jca 553 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))) ∧ 𝑣𝐴 ∧ (𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < if(𝑎𝑏, 𝑎, 𝑏))) → (𝜑𝑣𝐴))
48 rpre 11877 . . . . . . . . . . . . . 14 (𝑦 ∈ ℝ+𝑦 ∈ ℝ)
4948adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ ℝ+) → 𝑦 ∈ ℝ)
50493ad2ant1 1102 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))) → 𝑦 ∈ ℝ)
51503ad2ant1 1102 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))) ∧ 𝑣𝐴 ∧ (𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < if(𝑎𝑏, 𝑎, 𝑏))) → 𝑦 ∈ ℝ)
52 simp13l 1196 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))) ∧ 𝑣𝐴 ∧ (𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < if(𝑎𝑏, 𝑎, 𝑏))) → ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)))
53 simp3l 1109 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))) ∧ 𝑣𝐴 ∧ (𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < if(𝑎𝑏, 𝑎, 𝑏))) → 𝑣𝐷)
5411sselda 3636 . . . . . . . . . . . . . . . . 17 ((𝜑𝑣𝐴) → 𝑣 ∈ ℂ)
5545, 46, 54syl2anc 694 . . . . . . . . . . . . . . . 16 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))) ∧ 𝑣𝐴 ∧ (𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < if(𝑎𝑏, 𝑎, 𝑏))) → 𝑣 ∈ ℂ)
5645, 14syl 17 . . . . . . . . . . . . . . . 16 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))) ∧ 𝑣𝐴 ∧ (𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < if(𝑎𝑏, 𝑎, 𝑏))) → 𝐷 ∈ ℂ)
5755, 56subcld 10430 . . . . . . . . . . . . . . 15 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))) ∧ 𝑣𝐴 ∧ (𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < if(𝑎𝑏, 𝑎, 𝑏))) → (𝑣𝐷) ∈ ℂ)
5857abscld 14219 . . . . . . . . . . . . . 14 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))) ∧ 𝑣𝐴 ∧ (𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < if(𝑎𝑏, 𝑎, 𝑏))) → (abs‘(𝑣𝐷)) ∈ ℝ)
5938rpred 11910 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))) → if(𝑎𝑏, 𝑎, 𝑏) ∈ ℝ)
60593ad2ant1 1102 . . . . . . . . . . . . . 14 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))) ∧ 𝑣𝐴 ∧ (𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < if(𝑎𝑏, 𝑎, 𝑏))) → if(𝑎𝑏, 𝑎, 𝑏) ∈ ℝ)
61 simpl 472 . . . . . . . . . . . . . . . . 17 ((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) → 𝑎 ∈ ℝ+)
6261rpred 11910 . . . . . . . . . . . . . . . 16 ((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) → 𝑎 ∈ ℝ)
63623ad2ant2 1103 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))) → 𝑎 ∈ ℝ)
64633ad2ant1 1102 . . . . . . . . . . . . . 14 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))) ∧ 𝑣𝐴 ∧ (𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < if(𝑎𝑏, 𝑎, 𝑏))) → 𝑎 ∈ ℝ)
65 simp3r 1110 . . . . . . . . . . . . . 14 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))) ∧ 𝑣𝐴 ∧ (𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < if(𝑎𝑏, 𝑎, 𝑏))) → (abs‘(𝑣𝐷)) < if(𝑎𝑏, 𝑎, 𝑏))
66 simpr 476 . . . . . . . . . . . . . . . . . 18 ((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) → 𝑏 ∈ ℝ+)
6766rpred 11910 . . . . . . . . . . . . . . . . 17 ((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) → 𝑏 ∈ ℝ)
68 min1 12058 . . . . . . . . . . . . . . . . 17 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → if(𝑎𝑏, 𝑎, 𝑏) ≤ 𝑎)
6962, 67, 68syl2anc 694 . . . . . . . . . . . . . . . 16 ((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) → if(𝑎𝑏, 𝑎, 𝑏) ≤ 𝑎)
70693ad2ant2 1103 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))) → if(𝑎𝑏, 𝑎, 𝑏) ≤ 𝑎)
71703ad2ant1 1102 . . . . . . . . . . . . . 14 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))) ∧ 𝑣𝐴 ∧ (𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < if(𝑎𝑏, 𝑎, 𝑏))) → if(𝑎𝑏, 𝑎, 𝑏) ≤ 𝑎)
7258, 60, 64, 65, 71ltletrd 10235 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))) ∧ 𝑣𝐴 ∧ (𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < if(𝑎𝑏, 𝑎, 𝑏))) → (abs‘(𝑣𝐷)) < 𝑎)
7353, 72jca 553 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))) ∧ 𝑣𝐴 ∧ (𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < if(𝑎𝑏, 𝑎, 𝑏))) → (𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎))
74 rsp 2958 . . . . . . . . . . . 12 (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) → (𝑣𝐴 → ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2))))
7552, 46, 73, 74syl3c 66 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))) ∧ 𝑣𝐴 ∧ (𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < if(𝑎𝑏, 𝑎, 𝑏))) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2))
7647, 51, 75jca31 556 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))) ∧ 𝑣𝐴 ∧ (𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < if(𝑎𝑏, 𝑎, 𝑏))) → (((𝜑𝑣𝐴) ∧ 𝑦 ∈ ℝ) ∧ (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)))
77 simp13r 1197 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))) ∧ 𝑣𝐴 ∧ (𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < if(𝑎𝑏, 𝑎, 𝑏))) → ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))
78673ad2ant2 1103 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))) → 𝑏 ∈ ℝ)
79783ad2ant1 1102 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))) ∧ 𝑣𝐴 ∧ (𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < if(𝑎𝑏, 𝑎, 𝑏))) → 𝑏 ∈ ℝ)
80 min2 12059 . . . . . . . . . . . . . . . 16 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → if(𝑎𝑏, 𝑎, 𝑏) ≤ 𝑏)
8162, 67, 80syl2anc 694 . . . . . . . . . . . . . . 15 ((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) → if(𝑎𝑏, 𝑎, 𝑏) ≤ 𝑏)
82813ad2ant2 1103 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))) → if(𝑎𝑏, 𝑎, 𝑏) ≤ 𝑏)
83823ad2ant1 1102 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))) ∧ 𝑣𝐴 ∧ (𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < if(𝑎𝑏, 𝑎, 𝑏))) → if(𝑎𝑏, 𝑎, 𝑏) ≤ 𝑏)
8458, 60, 79, 65, 83ltletrd 10235 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))) ∧ 𝑣𝐴 ∧ (𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < if(𝑎𝑏, 𝑎, 𝑏))) → (abs‘(𝑣𝐷)) < 𝑏)
8553, 84jca 553 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))) ∧ 𝑣𝐴 ∧ (𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < if(𝑎𝑏, 𝑎, 𝑏))) → (𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏))
86 rsp 2958 . . . . . . . . . . 11 (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)) → (𝑣𝐴 → ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2))))
8777, 46, 85, 86syl3c 66 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))) ∧ 𝑣𝐴 ∧ (𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < if(𝑎𝑏, 𝑎, 𝑏))) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2))
888, 24addcld 10097 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐴) → (𝐵 + 𝐶) ∈ ℂ)
89 addlimc.h . . . . . . . . . . . . . . . 16 𝐻 = (𝑥𝐴 ↦ (𝐵 + 𝐶))
9088, 89fmptd 6425 . . . . . . . . . . . . . . 15 (𝜑𝐻:𝐴⟶ℂ)
9190ffvelrnda 6399 . . . . . . . . . . . . . 14 ((𝜑𝑣𝐴) → (𝐻𝑣) ∈ ℂ)
9291ad3antrrr 766 . . . . . . . . . . . . 13 (((((𝜑𝑣𝐴) ∧ 𝑦 ∈ ℝ) ∧ (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)) → (𝐻𝑣) ∈ ℂ)
93 simp-4l 823 . . . . . . . . . . . . . 14 (((((𝜑𝑣𝐴) ∧ 𝑦 ∈ ℝ) ∧ (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)) → 𝜑)
9493, 7syl 17 . . . . . . . . . . . . 13 (((((𝜑𝑣𝐴) ∧ 𝑦 ∈ ℝ) ∧ (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)) → (𝐸 + 𝐼) ∈ ℂ)
9592, 94subcld 10430 . . . . . . . . . . . 12 (((((𝜑𝑣𝐴) ∧ 𝑦 ∈ ℝ) ∧ (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)) → ((𝐻𝑣) − (𝐸 + 𝐼)) ∈ ℂ)
9695abscld 14219 . . . . . . . . . . 11 (((((𝜑𝑣𝐴) ∧ 𝑦 ∈ ℝ) ∧ (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)) → (abs‘((𝐻𝑣) − (𝐸 + 𝐼))) ∈ ℝ)
9710ffvelrnda 6399 . . . . . . . . . . . . . . 15 ((𝜑𝑣𝐴) → (𝐹𝑣) ∈ ℂ)
9897ad3antrrr 766 . . . . . . . . . . . . . 14 (((((𝜑𝑣𝐴) ∧ 𝑦 ∈ ℝ) ∧ (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)) → (𝐹𝑣) ∈ ℂ)
9993, 3syl 17 . . . . . . . . . . . . . 14 (((((𝜑𝑣𝐴) ∧ 𝑦 ∈ ℝ) ∧ (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)) → 𝐸 ∈ ℂ)
10098, 99subcld 10430 . . . . . . . . . . . . 13 (((((𝜑𝑣𝐴) ∧ 𝑦 ∈ ℝ) ∧ (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)) → ((𝐹𝑣) − 𝐸) ∈ ℂ)
101100abscld 14219 . . . . . . . . . . . 12 (((((𝜑𝑣𝐴) ∧ 𝑦 ∈ ℝ) ∧ (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)) → (abs‘((𝐹𝑣) − 𝐸)) ∈ ℝ)
10226ffvelrnda 6399 . . . . . . . . . . . . . . 15 ((𝜑𝑣𝐴) → (𝐺𝑣) ∈ ℂ)
103102ad3antrrr 766 . . . . . . . . . . . . . 14 (((((𝜑𝑣𝐴) ∧ 𝑦 ∈ ℝ) ∧ (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)) → (𝐺𝑣) ∈ ℂ)
10493, 6syl 17 . . . . . . . . . . . . . 14 (((((𝜑𝑣𝐴) ∧ 𝑦 ∈ ℝ) ∧ (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)) → 𝐼 ∈ ℂ)
105103, 104subcld 10430 . . . . . . . . . . . . 13 (((((𝜑𝑣𝐴) ∧ 𝑦 ∈ ℝ) ∧ (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)) → ((𝐺𝑣) − 𝐼) ∈ ℂ)
106105abscld 14219 . . . . . . . . . . . 12 (((((𝜑𝑣𝐴) ∧ 𝑦 ∈ ℝ) ∧ (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)) → (abs‘((𝐺𝑣) − 𝐼)) ∈ ℝ)
107101, 106readdcld 10107 . . . . . . . . . . 11 (((((𝜑𝑣𝐴) ∧ 𝑦 ∈ ℝ) ∧ (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)) → ((abs‘((𝐹𝑣) − 𝐸)) + (abs‘((𝐺𝑣) − 𝐼))) ∈ ℝ)
108 simpllr 815 . . . . . . . . . . 11 (((((𝜑𝑣𝐴) ∧ 𝑦 ∈ ℝ) ∧ (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)) → 𝑦 ∈ ℝ)
109 nfv 1883 . . . . . . . . . . . . . . . . . 18 𝑥(𝜑𝑣𝐴)
110 nfmpt1 4780 . . . . . . . . . . . . . . . . . . . . 21 𝑥(𝑥𝐴 ↦ (𝐵 + 𝐶))
11189, 110nfcxfr 2791 . . . . . . . . . . . . . . . . . . . 20 𝑥𝐻
112 nfcv 2793 . . . . . . . . . . . . . . . . . . . 20 𝑥𝑣
113111, 112nffv 6236 . . . . . . . . . . . . . . . . . . 19 𝑥(𝐻𝑣)
114 nfmpt1 4780 . . . . . . . . . . . . . . . . . . . . . 22 𝑥(𝑥𝐴𝐵)
1159, 114nfcxfr 2791 . . . . . . . . . . . . . . . . . . . . 21 𝑥𝐹
116115, 112nffv 6236 . . . . . . . . . . . . . . . . . . . 20 𝑥(𝐹𝑣)
117 nfcv 2793 . . . . . . . . . . . . . . . . . . . 20 𝑥 +
118 nfmpt1 4780 . . . . . . . . . . . . . . . . . . . . . 22 𝑥(𝑥𝐴𝐶)
11925, 118nfcxfr 2791 . . . . . . . . . . . . . . . . . . . . 21 𝑥𝐺
120119, 112nffv 6236 . . . . . . . . . . . . . . . . . . . 20 𝑥(𝐺𝑣)
121116, 117, 120nfov 6716 . . . . . . . . . . . . . . . . . . 19 𝑥((𝐹𝑣) + (𝐺𝑣))
122113, 121nfeq 2805 . . . . . . . . . . . . . . . . . 18 𝑥(𝐻𝑣) = ((𝐹𝑣) + (𝐺𝑣))
123109, 122nfim 1865 . . . . . . . . . . . . . . . . 17 𝑥((𝜑𝑣𝐴) → (𝐻𝑣) = ((𝐹𝑣) + (𝐺𝑣)))
124 eleq1 2718 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑣 → (𝑥𝐴𝑣𝐴))
125124anbi2d 740 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑣 → ((𝜑𝑥𝐴) ↔ (𝜑𝑣𝐴)))
126 fveq2 6229 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑣 → (𝐻𝑥) = (𝐻𝑣))
127 fveq2 6229 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑣 → (𝐹𝑥) = (𝐹𝑣))
128 fveq2 6229 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑣 → (𝐺𝑥) = (𝐺𝑣))
129127, 128oveq12d 6708 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑣 → ((𝐹𝑥) + (𝐺𝑥)) = ((𝐹𝑣) + (𝐺𝑣)))
130126, 129eqeq12d 2666 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑣 → ((𝐻𝑥) = ((𝐹𝑥) + (𝐺𝑥)) ↔ (𝐻𝑣) = ((𝐹𝑣) + (𝐺𝑣))))
131125, 130imbi12d 333 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑣 → (((𝜑𝑥𝐴) → (𝐻𝑥) = ((𝐹𝑥) + (𝐺𝑥))) ↔ ((𝜑𝑣𝐴) → (𝐻𝑣) = ((𝐹𝑣) + (𝐺𝑣)))))
132 simpr 476 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥𝐴) → 𝑥𝐴)
13389fvmpt2 6330 . . . . . . . . . . . . . . . . . . 19 ((𝑥𝐴 ∧ (𝐵 + 𝐶) ∈ ℂ) → (𝐻𝑥) = (𝐵 + 𝐶))
134132, 88, 133syl2anc 694 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥𝐴) → (𝐻𝑥) = (𝐵 + 𝐶))
1359fvmpt2 6330 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥𝐴𝐵 ∈ ℂ) → (𝐹𝑥) = 𝐵)
136132, 8, 135syl2anc 694 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥𝐴) → (𝐹𝑥) = 𝐵)
137136eqcomd 2657 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥𝐴) → 𝐵 = (𝐹𝑥))
13825fvmpt2 6330 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥𝐴𝐶 ∈ ℂ) → (𝐺𝑥) = 𝐶)
139132, 24, 138syl2anc 694 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥𝐴) → (𝐺𝑥) = 𝐶)
140139eqcomd 2657 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥𝐴) → 𝐶 = (𝐺𝑥))
141137, 140oveq12d 6708 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥𝐴) → (𝐵 + 𝐶) = ((𝐹𝑥) + (𝐺𝑥)))
142134, 141eqtrd 2685 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐴) → (𝐻𝑥) = ((𝐹𝑥) + (𝐺𝑥)))
143123, 131, 142chvar 2298 . . . . . . . . . . . . . . . 16 ((𝜑𝑣𝐴) → (𝐻𝑣) = ((𝐹𝑣) + (𝐺𝑣)))
144143ad3antrrr 766 . . . . . . . . . . . . . . 15 (((((𝜑𝑣𝐴) ∧ 𝑦 ∈ ℝ) ∧ (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)) → (𝐻𝑣) = ((𝐹𝑣) + (𝐺𝑣)))
145144oveq1d 6705 . . . . . . . . . . . . . 14 (((((𝜑𝑣𝐴) ∧ 𝑦 ∈ ℝ) ∧ (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)) → ((𝐻𝑣) − (𝐸 + 𝐼)) = (((𝐹𝑣) + (𝐺𝑣)) − (𝐸 + 𝐼)))
14698, 103, 99, 104addsub4d 10477 . . . . . . . . . . . . . 14 (((((𝜑𝑣𝐴) ∧ 𝑦 ∈ ℝ) ∧ (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)) → (((𝐹𝑣) + (𝐺𝑣)) − (𝐸 + 𝐼)) = (((𝐹𝑣) − 𝐸) + ((𝐺𝑣) − 𝐼)))
147145, 146eqtrd 2685 . . . . . . . . . . . . 13 (((((𝜑𝑣𝐴) ∧ 𝑦 ∈ ℝ) ∧ (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)) → ((𝐻𝑣) − (𝐸 + 𝐼)) = (((𝐹𝑣) − 𝐸) + ((𝐺𝑣) − 𝐼)))
148147fveq2d 6233 . . . . . . . . . . . 12 (((((𝜑𝑣𝐴) ∧ 𝑦 ∈ ℝ) ∧ (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)) → (abs‘((𝐻𝑣) − (𝐸 + 𝐼))) = (abs‘(((𝐹𝑣) − 𝐸) + ((𝐺𝑣) − 𝐼))))
149100, 105abstrid 14239 . . . . . . . . . . . 12 (((((𝜑𝑣𝐴) ∧ 𝑦 ∈ ℝ) ∧ (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)) → (abs‘(((𝐹𝑣) − 𝐸) + ((𝐺𝑣) − 𝐼))) ≤ ((abs‘((𝐹𝑣) − 𝐸)) + (abs‘((𝐺𝑣) − 𝐼))))
150148, 149eqbrtrd 4707 . . . . . . . . . . 11 (((((𝜑𝑣𝐴) ∧ 𝑦 ∈ ℝ) ∧ (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)) → (abs‘((𝐻𝑣) − (𝐸 + 𝐼))) ≤ ((abs‘((𝐹𝑣) − 𝐸)) + (abs‘((𝐺𝑣) − 𝐼))))
151 simplr 807 . . . . . . . . . . . 12 (((((𝜑𝑣𝐴) ∧ 𝑦 ∈ ℝ) ∧ (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2))
152 simpr 476 . . . . . . . . . . . 12 (((((𝜑𝑣𝐴) ∧ 𝑦 ∈ ℝ) ∧ (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2))
153101, 106, 108, 151, 152lt2halvesd 11318 . . . . . . . . . . 11 (((((𝜑𝑣𝐴) ∧ 𝑦 ∈ ℝ) ∧ (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)) → ((abs‘((𝐹𝑣) − 𝐸)) + (abs‘((𝐺𝑣) − 𝐼))) < 𝑦)
15496, 107, 108, 150, 153lelttrd 10233 . . . . . . . . . 10 (((((𝜑𝑣𝐴) ∧ 𝑦 ∈ ℝ) ∧ (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)) → (abs‘((𝐻𝑣) − (𝐸 + 𝐼))) < 𝑦)
15576, 87, 154syl2anc 694 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))) ∧ 𝑣𝐴 ∧ (𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < if(𝑎𝑏, 𝑎, 𝑏))) → (abs‘((𝐻𝑣) − (𝐸 + 𝐼))) < 𝑦)
1561553exp 1283 . . . . . . . 8 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))) → (𝑣𝐴 → ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < if(𝑎𝑏, 𝑎, 𝑏)) → (abs‘((𝐻𝑣) − (𝐸 + 𝐼))) < 𝑦)))
15744, 156ralrimi 2986 . . . . . . 7 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))) → ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < if(𝑎𝑏, 𝑎, 𝑏)) → (abs‘((𝐻𝑣) − (𝐸 + 𝐼))) < 𝑦))
158 breq2 4689 . . . . . . . . . . 11 (𝑤 = if(𝑎𝑏, 𝑎, 𝑏) → ((abs‘(𝑣𝐷)) < 𝑤 ↔ (abs‘(𝑣𝐷)) < if(𝑎𝑏, 𝑎, 𝑏)))
159158anbi2d 740 . . . . . . . . . 10 (𝑤 = if(𝑎𝑏, 𝑎, 𝑏) → ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑤) ↔ (𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < if(𝑎𝑏, 𝑎, 𝑏))))
160159imbi1d 330 . . . . . . . . 9 (𝑤 = if(𝑎𝑏, 𝑎, 𝑏) → (((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑤) → (abs‘((𝐻𝑣) − (𝐸 + 𝐼))) < 𝑦) ↔ ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < if(𝑎𝑏, 𝑎, 𝑏)) → (abs‘((𝐻𝑣) − (𝐸 + 𝐼))) < 𝑦)))
161160ralbidv 3015 . . . . . . . 8 (𝑤 = if(𝑎𝑏, 𝑎, 𝑏) → (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑤) → (abs‘((𝐻𝑣) − (𝐸 + 𝐼))) < 𝑦) ↔ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < if(𝑎𝑏, 𝑎, 𝑏)) → (abs‘((𝐻𝑣) − (𝐸 + 𝐼))) < 𝑦)))
162161rspcev 3340 . . . . . . 7 ((if(𝑎𝑏, 𝑎, 𝑏) ∈ ℝ+ ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < if(𝑎𝑏, 𝑎, 𝑏)) → (abs‘((𝐻𝑣) − (𝐸 + 𝐼))) < 𝑦)) → ∃𝑤 ∈ ℝ+𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑤) → (abs‘((𝐻𝑣) − (𝐸 + 𝐼))) < 𝑦))
16338, 157, 162syl2anc 694 . . . . . 6 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))) → ∃𝑤 ∈ ℝ+𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑤) → (abs‘((𝐻𝑣) − (𝐸 + 𝐼))) < 𝑦))
1641633exp 1283 . . . . 5 ((𝜑𝑦 ∈ ℝ+) → ((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) → ((∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2))) → ∃𝑤 ∈ ℝ+𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑤) → (abs‘((𝐻𝑣) − (𝐸 + 𝐼))) < 𝑦))))
165164rexlimdvv 3066 . . . 4 ((𝜑𝑦 ∈ ℝ+) → (∃𝑎 ∈ ℝ+𝑏 ∈ ℝ+ (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2))) → ∃𝑤 ∈ ℝ+𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑤) → (abs‘((𝐻𝑣) − (𝐸 + 𝐼))) < 𝑦)))
16636, 165mpd 15 . . 3 ((𝜑𝑦 ∈ ℝ+) → ∃𝑤 ∈ ℝ+𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑤) → (abs‘((𝐻𝑣) − (𝐸 + 𝐼))) < 𝑦))
167166ralrimiva 2995 . 2 (𝜑 → ∀𝑦 ∈ ℝ+𝑤 ∈ ℝ+𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑤) → (abs‘((𝐻𝑣) − (𝐸 + 𝐼))) < 𝑦))
16890, 11, 14ellimc3 23688 . 2 (𝜑 → ((𝐸 + 𝐼) ∈ (𝐻 lim 𝐷) ↔ ((𝐸 + 𝐼) ∈ ℂ ∧ ∀𝑦 ∈ ℝ+𝑤 ∈ ℝ+𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑤) → (abs‘((𝐻𝑣) − (𝐸 + 𝐼))) < 𝑦))))
1697, 167, 168mpbir2and 977 1 (𝜑 → (𝐸 + 𝐼) ∈ (𝐻 lim 𝐷))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   ∧ w3a 1054   = wceq 1523   ∈ wcel 2030   ≠ wne 2823  ∀wral 2941  ∃wrex 2942   ⊆ wss 3607  ifcif 4119   class class class wbr 4685   ↦ cmpt 4762  dom cdm 5143  ⟶wf 5922  ‘cfv 5926  (class class class)co 6690  ℂcc 9972  ℝcr 9973   + caddc 9977   < clt 10112   ≤ cle 10113   − cmin 10304   / cdiv 10722  2c2 11108  ℝ+crp 11870  abscabs 14018   limℂ climc 23671 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-map 7901  df-pm 7902  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-fi 8358  df-sup 8389  df-inf 8390  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-9 11124  df-n0 11331  df-z 11416  df-dec 11532  df-uz 11726  df-q 11827  df-rp 11871  df-xneg 11984  df-xadd 11985  df-xmul 11986  df-fz 12365  df-seq 12842  df-exp 12901  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-struct 15906  df-ndx 15907  df-slot 15908  df-base 15910  df-plusg 16001  df-mulr 16002  df-starv 16003  df-tset 16007  df-ple 16008  df-ds 16011  df-unif 16012  df-rest 16130  df-topn 16131  df-topgen 16151  df-psmet 19786  df-xmet 19787  df-met 19788  df-bl 19789  df-mopn 19790  df-cnfld 19795  df-top 20747  df-topon 20764  df-topsp 20785  df-bases 20798  df-cnp 21080  df-xms 22172  df-ms 22173  df-limc 23675 This theorem is referenced by:  sublimc  40202  reclimc  40203  fourierdlem53  40694  fourierdlem60  40701  fourierdlem61  40702
 Copyright terms: Public domain W3C validator