![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > addid1i | Structured version Visualization version GIF version |
Description: 0 is an additive identity. (Contributed by NM, 23-Nov-1994.) (Revised by Scott Fenton, 3-Jan-2013.) |
Ref | Expression |
---|---|
mul.1 | ⊢ 𝐴 ∈ ℂ |
Ref | Expression |
---|---|
addid1i | ⊢ (𝐴 + 0) = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mul.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
2 | addid1 10408 | . 2 ⊢ (𝐴 ∈ ℂ → (𝐴 + 0) = 𝐴) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 + 0) = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1632 ∈ wcel 2139 (class class class)co 6813 ℂcc 10126 0cc0 10128 + caddc 10131 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 ax-resscn 10185 ax-1cn 10186 ax-icn 10187 ax-addcl 10188 ax-addrcl 10189 ax-mulcl 10190 ax-mulrcl 10191 ax-mulcom 10192 ax-addass 10193 ax-mulass 10194 ax-distr 10195 ax-i2m1 10196 ax-1ne0 10197 ax-1rid 10198 ax-rnegex 10199 ax-rrecex 10200 ax-cnre 10201 ax-pre-lttri 10202 ax-pre-lttrn 10203 ax-pre-ltadd 10204 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-po 5187 df-so 5188 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-ov 6816 df-er 7911 df-en 8122 df-dom 8123 df-sdom 8124 df-pnf 10268 df-mnf 10269 df-ltxr 10271 |
This theorem is referenced by: 1p0e1 11325 9p1e10 11688 num0u 11700 numnncl2 11716 dec10OLD 11747 decrmanc 11768 decaddi 11771 decaddci 11772 decmul1 11777 decmul1OLD 11778 decmulnc 11783 sq10OLD 13245 fsumrelem 14738 bpoly4 14989 demoivreALT 15130 decexp2 15981 decsplit0 15987 decsplit0OLD 15991 37prm 16030 43prm 16031 139prm 16033 163prm 16034 317prm 16035 631prm 16036 1259lem2 16041 1259lem3 16042 1259lem4 16043 1259lem5 16044 2503lem1 16046 2503lem2 16047 2503lem3 16048 4001lem1 16050 4001lem2 16051 4001lem3 16052 4001lem4 16053 sinhalfpilem 24414 efipi 24424 asin1 24820 log2ublem3 24874 log2ub 24875 birthday 24880 emcllem6 24926 lgam1 24989 ip2i 27992 pythi 28014 normlem6 28281 normpythi 28308 normpari 28320 pjneli 28891 dp20u 29894 1mhdrd 29933 ballotth 30908 hgt750lemd 31035 hgt750lem2 31039 dirkertrigeqlem3 40820 fourierdlem103 40929 fourierdlem104 40930 fouriersw 40951 257prm 41983 fmtno4nprmfac193 41996 fmtno5faclem3 42003 fmtno5fac 42004 139prmALT 42021 127prm 42025 m11nprm 42028 |
Copyright terms: Public domain | W3C validator |