![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > addgt0d | Structured version Visualization version GIF version |
Description: Addition of 2 positive numbers is positive. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
leidd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
ltnegd.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
addgt0d.3 | ⊢ (𝜑 → 0 < 𝐴) |
addgt0d.4 | ⊢ (𝜑 → 0 < 𝐵) |
Ref | Expression |
---|---|
addgt0d | ⊢ (𝜑 → 0 < (𝐴 + 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | leidd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
2 | ltnegd.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
3 | 0red 10243 | . . 3 ⊢ (𝜑 → 0 ∈ ℝ) | |
4 | addgt0d.3 | . . 3 ⊢ (𝜑 → 0 < 𝐴) | |
5 | 3, 1, 4 | ltled 10387 | . 2 ⊢ (𝜑 → 0 ≤ 𝐴) |
6 | addgt0d.4 | . 2 ⊢ (𝜑 → 0 < 𝐵) | |
7 | 1, 2, 5, 6 | addgegt0d 10803 | 1 ⊢ (𝜑 → 0 < (𝐴 + 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2145 class class class wbr 4786 (class class class)co 6793 ℝcr 10137 0cc0 10138 + caddc 10141 < clt 10276 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 ax-resscn 10195 ax-1cn 10196 ax-icn 10197 ax-addcl 10198 ax-addrcl 10199 ax-mulcl 10200 ax-mulrcl 10201 ax-mulcom 10202 ax-addass 10203 ax-mulass 10204 ax-distr 10205 ax-i2m1 10206 ax-1ne0 10207 ax-1rid 10208 ax-rnegex 10209 ax-rrecex 10210 ax-cnre 10211 ax-pre-lttri 10212 ax-pre-lttrn 10213 ax-pre-ltadd 10214 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-op 4323 df-uni 4575 df-br 4787 df-opab 4847 df-mpt 4864 df-id 5157 df-po 5170 df-so 5171 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-ov 6796 df-er 7896 df-en 8110 df-dom 8111 df-sdom 8112 df-pnf 10278 df-mnf 10279 df-xr 10280 df-ltxr 10281 df-le 10282 |
This theorem is referenced by: bpoly4 14996 tanhlt1 15096 nnoddm1d2 15310 pythagtriplem11 15737 pythagtriplem12 15738 pythagtriplem13 15739 pythagtriplem14 15740 pythagtriplem16 15742 prmgaplem7 15968 asinsin 24840 gausslemma2dlem1a 25311 clwwlkf1 27205 pellexlem2 37920 radcnvrat 39039 stirlinglem15 40822 fourierdlem79 40919 |
Copyright terms: Public domain | W3C validator |