MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addge0d Structured version   Visualization version   GIF version

Theorem addge0d 10809
Description: Addition of 2 nonnegative numbers is nonnegative. (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
leidd.1 (𝜑𝐴 ∈ ℝ)
ltnegd.2 (𝜑𝐵 ∈ ℝ)
addge0d.3 (𝜑 → 0 ≤ 𝐴)
addge0d.4 (𝜑 → 0 ≤ 𝐵)
Assertion
Ref Expression
addge0d (𝜑 → 0 ≤ (𝐴 + 𝐵))

Proof of Theorem addge0d
StepHypRef Expression
1 leidd.1 . 2 (𝜑𝐴 ∈ ℝ)
2 ltnegd.2 . 2 (𝜑𝐵 ∈ ℝ)
3 addge0d.3 . 2 (𝜑 → 0 ≤ 𝐴)
4 addge0d.4 . 2 (𝜑 → 0 ≤ 𝐵)
5 addge0 10723 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴 ∧ 0 ≤ 𝐵)) → 0 ≤ (𝐴 + 𝐵))
61, 2, 3, 4, 5syl22anc 1477 1 (𝜑 → 0 ≤ (𝐴 + 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2145   class class class wbr 4787  (class class class)co 6796  cr 10141  0cc0 10142   + caddc 10145  cle 10281
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7100  ax-resscn 10199  ax-1cn 10200  ax-icn 10201  ax-addcl 10202  ax-addrcl 10203  ax-mulcl 10204  ax-mulrcl 10205  ax-mulcom 10206  ax-addass 10207  ax-mulass 10208  ax-distr 10209  ax-i2m1 10210  ax-1ne0 10211  ax-1rid 10212  ax-rnegex 10213  ax-rrecex 10214  ax-cnre 10215  ax-pre-lttri 10216  ax-pre-lttrn 10217  ax-pre-ltadd 10218
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-op 4324  df-uni 4576  df-br 4788  df-opab 4848  df-mpt 4865  df-id 5158  df-po 5171  df-so 5172  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-ov 6799  df-er 7900  df-en 8114  df-dom 8115  df-sdom 8116  df-pnf 10282  df-mnf 10283  df-xr 10284  df-ltxr 10285  df-le 10286
This theorem is referenced by:  fldiv  12867  modaddmodlo  12942  cjmulge0  14094  absrele  14256  abstri  14278  nn0oddm1d2  15309  prdsxmetlem  22393  nmotri  22763  tchcphlem1  23253  trirn  23402  minveclem4  23422  ibladdlem  23806  itgaddlem1  23809  itgaddlem2  23810  iblabs  23815  cxpaddle  24714  asinlem3a  24818  fsumharmonic  24959  lgamgulmlem3  24978  mulog2sumlem2  25445  selbergb  25459  selberg2b  25462  pntrlog2bndlem2  25488  pntrlog2bnd  25494  abvcxp  25525  smcnlem  27892  minvecolem4  28076  fsumrp0cl  30035  sqsscirc1  30294  omssubaddlem  30701  dnibndlem9  32813  itg2addnc  33796  ibladdnclem  33798  itgaddnclem1  33800  itgaddnclem2  33801  iblabsnc  33806  iblmulc2nc  33807  ftc1anclem4  33820  ftc1anclem7  33823  ftc1anc  33825  areacirc  33837  rmxypos  38040  wallispi2lem1  40802  fourierdlem15  40853  fourierdlem30  40868  fourierdlem47  40884  sge0xaddlem2  41165  hoidmvlelem2  41327  hoidmvlelem4  41329  ovolval5lem1  41383  flsqrt  42033  nn0eo  42847
  Copyright terms: Public domain W3C validator