MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  adderpqlem Structured version   Visualization version   GIF version

Theorem adderpqlem 9814
Description: Lemma for adderpq 9816. (Contributed by Mario Carneiro, 8-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
adderpqlem ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N) ∧ 𝐶 ∈ (N × N)) → (𝐴 ~Q 𝐵 ↔ (𝐴 +pQ 𝐶) ~Q (𝐵 +pQ 𝐶)))

Proof of Theorem adderpqlem
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xp1st 7242 . . . . . 6 (𝐴 ∈ (N × N) → (1st𝐴) ∈ N)
213ad2ant1 1102 . . . . 5 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N) ∧ 𝐶 ∈ (N × N)) → (1st𝐴) ∈ N)
3 xp2nd 7243 . . . . . 6 (𝐶 ∈ (N × N) → (2nd𝐶) ∈ N)
433ad2ant3 1104 . . . . 5 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N) ∧ 𝐶 ∈ (N × N)) → (2nd𝐶) ∈ N)
5 mulclpi 9753 . . . . 5 (((1st𝐴) ∈ N ∧ (2nd𝐶) ∈ N) → ((1st𝐴) ·N (2nd𝐶)) ∈ N)
62, 4, 5syl2anc 694 . . . 4 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N) ∧ 𝐶 ∈ (N × N)) → ((1st𝐴) ·N (2nd𝐶)) ∈ N)
7 xp1st 7242 . . . . . 6 (𝐶 ∈ (N × N) → (1st𝐶) ∈ N)
873ad2ant3 1104 . . . . 5 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N) ∧ 𝐶 ∈ (N × N)) → (1st𝐶) ∈ N)
9 xp2nd 7243 . . . . . 6 (𝐴 ∈ (N × N) → (2nd𝐴) ∈ N)
1093ad2ant1 1102 . . . . 5 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N) ∧ 𝐶 ∈ (N × N)) → (2nd𝐴) ∈ N)
11 mulclpi 9753 . . . . 5 (((1st𝐶) ∈ N ∧ (2nd𝐴) ∈ N) → ((1st𝐶) ·N (2nd𝐴)) ∈ N)
128, 10, 11syl2anc 694 . . . 4 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N) ∧ 𝐶 ∈ (N × N)) → ((1st𝐶) ·N (2nd𝐴)) ∈ N)
13 addclpi 9752 . . . 4 ((((1st𝐴) ·N (2nd𝐶)) ∈ N ∧ ((1st𝐶) ·N (2nd𝐴)) ∈ N) → (((1st𝐴) ·N (2nd𝐶)) +N ((1st𝐶) ·N (2nd𝐴))) ∈ N)
146, 12, 13syl2anc 694 . . 3 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N) ∧ 𝐶 ∈ (N × N)) → (((1st𝐴) ·N (2nd𝐶)) +N ((1st𝐶) ·N (2nd𝐴))) ∈ N)
15 mulclpi 9753 . . . 4 (((2nd𝐴) ∈ N ∧ (2nd𝐶) ∈ N) → ((2nd𝐴) ·N (2nd𝐶)) ∈ N)
1610, 4, 15syl2anc 694 . . 3 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N) ∧ 𝐶 ∈ (N × N)) → ((2nd𝐴) ·N (2nd𝐶)) ∈ N)
17 xp1st 7242 . . . . . 6 (𝐵 ∈ (N × N) → (1st𝐵) ∈ N)
18173ad2ant2 1103 . . . . 5 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N) ∧ 𝐶 ∈ (N × N)) → (1st𝐵) ∈ N)
19 mulclpi 9753 . . . . 5 (((1st𝐵) ∈ N ∧ (2nd𝐶) ∈ N) → ((1st𝐵) ·N (2nd𝐶)) ∈ N)
2018, 4, 19syl2anc 694 . . . 4 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N) ∧ 𝐶 ∈ (N × N)) → ((1st𝐵) ·N (2nd𝐶)) ∈ N)
21 xp2nd 7243 . . . . . 6 (𝐵 ∈ (N × N) → (2nd𝐵) ∈ N)
22213ad2ant2 1103 . . . . 5 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N) ∧ 𝐶 ∈ (N × N)) → (2nd𝐵) ∈ N)
23 mulclpi 9753 . . . . 5 (((1st𝐶) ∈ N ∧ (2nd𝐵) ∈ N) → ((1st𝐶) ·N (2nd𝐵)) ∈ N)
248, 22, 23syl2anc 694 . . . 4 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N) ∧ 𝐶 ∈ (N × N)) → ((1st𝐶) ·N (2nd𝐵)) ∈ N)
25 addclpi 9752 . . . 4 ((((1st𝐵) ·N (2nd𝐶)) ∈ N ∧ ((1st𝐶) ·N (2nd𝐵)) ∈ N) → (((1st𝐵) ·N (2nd𝐶)) +N ((1st𝐶) ·N (2nd𝐵))) ∈ N)
2620, 24, 25syl2anc 694 . . 3 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N) ∧ 𝐶 ∈ (N × N)) → (((1st𝐵) ·N (2nd𝐶)) +N ((1st𝐶) ·N (2nd𝐵))) ∈ N)
27 mulclpi 9753 . . . 4 (((2nd𝐵) ∈ N ∧ (2nd𝐶) ∈ N) → ((2nd𝐵) ·N (2nd𝐶)) ∈ N)
2822, 4, 27syl2anc 694 . . 3 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N) ∧ 𝐶 ∈ (N × N)) → ((2nd𝐵) ·N (2nd𝐶)) ∈ N)
29 enqbreq 9779 . . 3 ((((((1st𝐴) ·N (2nd𝐶)) +N ((1st𝐶) ·N (2nd𝐴))) ∈ N ∧ ((2nd𝐴) ·N (2nd𝐶)) ∈ N) ∧ ((((1st𝐵) ·N (2nd𝐶)) +N ((1st𝐶) ·N (2nd𝐵))) ∈ N ∧ ((2nd𝐵) ·N (2nd𝐶)) ∈ N)) → (⟨(((1st𝐴) ·N (2nd𝐶)) +N ((1st𝐶) ·N (2nd𝐴))), ((2nd𝐴) ·N (2nd𝐶))⟩ ~Q ⟨(((1st𝐵) ·N (2nd𝐶)) +N ((1st𝐶) ·N (2nd𝐵))), ((2nd𝐵) ·N (2nd𝐶))⟩ ↔ ((((1st𝐴) ·N (2nd𝐶)) +N ((1st𝐶) ·N (2nd𝐴))) ·N ((2nd𝐵) ·N (2nd𝐶))) = (((2nd𝐴) ·N (2nd𝐶)) ·N (((1st𝐵) ·N (2nd𝐶)) +N ((1st𝐶) ·N (2nd𝐵))))))
3014, 16, 26, 28, 29syl22anc 1367 . 2 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N) ∧ 𝐶 ∈ (N × N)) → (⟨(((1st𝐴) ·N (2nd𝐶)) +N ((1st𝐶) ·N (2nd𝐴))), ((2nd𝐴) ·N (2nd𝐶))⟩ ~Q ⟨(((1st𝐵) ·N (2nd𝐶)) +N ((1st𝐶) ·N (2nd𝐵))), ((2nd𝐵) ·N (2nd𝐶))⟩ ↔ ((((1st𝐴) ·N (2nd𝐶)) +N ((1st𝐶) ·N (2nd𝐴))) ·N ((2nd𝐵) ·N (2nd𝐶))) = (((2nd𝐴) ·N (2nd𝐶)) ·N (((1st𝐵) ·N (2nd𝐶)) +N ((1st𝐶) ·N (2nd𝐵))))))
31 addpipq2 9796 . . . 4 ((𝐴 ∈ (N × N) ∧ 𝐶 ∈ (N × N)) → (𝐴 +pQ 𝐶) = ⟨(((1st𝐴) ·N (2nd𝐶)) +N ((1st𝐶) ·N (2nd𝐴))), ((2nd𝐴) ·N (2nd𝐶))⟩)
32313adant2 1100 . . 3 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N) ∧ 𝐶 ∈ (N × N)) → (𝐴 +pQ 𝐶) = ⟨(((1st𝐴) ·N (2nd𝐶)) +N ((1st𝐶) ·N (2nd𝐴))), ((2nd𝐴) ·N (2nd𝐶))⟩)
33 addpipq2 9796 . . . 4 ((𝐵 ∈ (N × N) ∧ 𝐶 ∈ (N × N)) → (𝐵 +pQ 𝐶) = ⟨(((1st𝐵) ·N (2nd𝐶)) +N ((1st𝐶) ·N (2nd𝐵))), ((2nd𝐵) ·N (2nd𝐶))⟩)
34333adant1 1099 . . 3 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N) ∧ 𝐶 ∈ (N × N)) → (𝐵 +pQ 𝐶) = ⟨(((1st𝐵) ·N (2nd𝐶)) +N ((1st𝐶) ·N (2nd𝐵))), ((2nd𝐵) ·N (2nd𝐶))⟩)
3532, 34breq12d 4698 . 2 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N) ∧ 𝐶 ∈ (N × N)) → ((𝐴 +pQ 𝐶) ~Q (𝐵 +pQ 𝐶) ↔ ⟨(((1st𝐴) ·N (2nd𝐶)) +N ((1st𝐶) ·N (2nd𝐴))), ((2nd𝐴) ·N (2nd𝐶))⟩ ~Q ⟨(((1st𝐵) ·N (2nd𝐶)) +N ((1st𝐶) ·N (2nd𝐵))), ((2nd𝐵) ·N (2nd𝐶))⟩))
36 enqbreq2 9780 . . . 4 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐴 ~Q 𝐵 ↔ ((1st𝐴) ·N (2nd𝐵)) = ((1st𝐵) ·N (2nd𝐴))))
37363adant3 1101 . . 3 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N) ∧ 𝐶 ∈ (N × N)) → (𝐴 ~Q 𝐵 ↔ ((1st𝐴) ·N (2nd𝐵)) = ((1st𝐵) ·N (2nd𝐴))))
38 mulclpi 9753 . . . . 5 (((2nd𝐶) ∈ N ∧ (2nd𝐶) ∈ N) → ((2nd𝐶) ·N (2nd𝐶)) ∈ N)
394, 4, 38syl2anc 694 . . . 4 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N) ∧ 𝐶 ∈ (N × N)) → ((2nd𝐶) ·N (2nd𝐶)) ∈ N)
40 mulclpi 9753 . . . . 5 (((1st𝐴) ∈ N ∧ (2nd𝐵) ∈ N) → ((1st𝐴) ·N (2nd𝐵)) ∈ N)
412, 22, 40syl2anc 694 . . . 4 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N) ∧ 𝐶 ∈ (N × N)) → ((1st𝐴) ·N (2nd𝐵)) ∈ N)
42 mulcanpi 9760 . . . 4 ((((2nd𝐶) ·N (2nd𝐶)) ∈ N ∧ ((1st𝐴) ·N (2nd𝐵)) ∈ N) → ((((2nd𝐶) ·N (2nd𝐶)) ·N ((1st𝐴) ·N (2nd𝐵))) = (((2nd𝐶) ·N (2nd𝐶)) ·N ((1st𝐵) ·N (2nd𝐴))) ↔ ((1st𝐴) ·N (2nd𝐵)) = ((1st𝐵) ·N (2nd𝐴))))
4339, 41, 42syl2anc 694 . . 3 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N) ∧ 𝐶 ∈ (N × N)) → ((((2nd𝐶) ·N (2nd𝐶)) ·N ((1st𝐴) ·N (2nd𝐵))) = (((2nd𝐶) ·N (2nd𝐶)) ·N ((1st𝐵) ·N (2nd𝐴))) ↔ ((1st𝐴) ·N (2nd𝐵)) = ((1st𝐵) ·N (2nd𝐴))))
44 mulcompi 9756 . . . . . . . 8 (((2nd𝐶) ·N (2nd𝐶)) ·N ((1st𝐴) ·N (2nd𝐵))) = (((1st𝐴) ·N (2nd𝐵)) ·N ((2nd𝐶) ·N (2nd𝐶)))
45 fvex 6239 . . . . . . . . 9 (1st𝐴) ∈ V
46 fvex 6239 . . . . . . . . 9 (2nd𝐵) ∈ V
47 fvex 6239 . . . . . . . . 9 (2nd𝐶) ∈ V
48 mulcompi 9756 . . . . . . . . 9 (𝑥 ·N 𝑦) = (𝑦 ·N 𝑥)
49 mulasspi 9757 . . . . . . . . 9 ((𝑥 ·N 𝑦) ·N 𝑧) = (𝑥 ·N (𝑦 ·N 𝑧))
5045, 46, 47, 48, 49, 47caov4 6907 . . . . . . . 8 (((1st𝐴) ·N (2nd𝐵)) ·N ((2nd𝐶) ·N (2nd𝐶))) = (((1st𝐴) ·N (2nd𝐶)) ·N ((2nd𝐵) ·N (2nd𝐶)))
5144, 50eqtri 2673 . . . . . . 7 (((2nd𝐶) ·N (2nd𝐶)) ·N ((1st𝐴) ·N (2nd𝐵))) = (((1st𝐴) ·N (2nd𝐶)) ·N ((2nd𝐵) ·N (2nd𝐶)))
52 fvex 6239 . . . . . . . . 9 (2nd𝐴) ∈ V
53 fvex 6239 . . . . . . . . 9 (1st𝐶) ∈ V
5452, 47, 53, 48, 49, 46caov4 6907 . . . . . . . 8 (((2nd𝐴) ·N (2nd𝐶)) ·N ((1st𝐶) ·N (2nd𝐵))) = (((2nd𝐴) ·N (1st𝐶)) ·N ((2nd𝐶) ·N (2nd𝐵)))
55 mulcompi 9756 . . . . . . . . 9 ((2nd𝐴) ·N (1st𝐶)) = ((1st𝐶) ·N (2nd𝐴))
56 mulcompi 9756 . . . . . . . . 9 ((2nd𝐶) ·N (2nd𝐵)) = ((2nd𝐵) ·N (2nd𝐶))
5755, 56oveq12i 6702 . . . . . . . 8 (((2nd𝐴) ·N (1st𝐶)) ·N ((2nd𝐶) ·N (2nd𝐵))) = (((1st𝐶) ·N (2nd𝐴)) ·N ((2nd𝐵) ·N (2nd𝐶)))
5854, 57eqtri 2673 . . . . . . 7 (((2nd𝐴) ·N (2nd𝐶)) ·N ((1st𝐶) ·N (2nd𝐵))) = (((1st𝐶) ·N (2nd𝐴)) ·N ((2nd𝐵) ·N (2nd𝐶)))
5951, 58oveq12i 6702 . . . . . 6 ((((2nd𝐶) ·N (2nd𝐶)) ·N ((1st𝐴) ·N (2nd𝐵))) +N (((2nd𝐴) ·N (2nd𝐶)) ·N ((1st𝐶) ·N (2nd𝐵)))) = ((((1st𝐴) ·N (2nd𝐶)) ·N ((2nd𝐵) ·N (2nd𝐶))) +N (((1st𝐶) ·N (2nd𝐴)) ·N ((2nd𝐵) ·N (2nd𝐶))))
60 addcompi 9754 . . . . . 6 ((((2nd𝐴) ·N (2nd𝐶)) ·N ((1st𝐶) ·N (2nd𝐵))) +N (((2nd𝐶) ·N (2nd𝐶)) ·N ((1st𝐴) ·N (2nd𝐵)))) = ((((2nd𝐶) ·N (2nd𝐶)) ·N ((1st𝐴) ·N (2nd𝐵))) +N (((2nd𝐴) ·N (2nd𝐶)) ·N ((1st𝐶) ·N (2nd𝐵))))
61 ovex 6718 . . . . . . 7 ((1st𝐴) ·N (2nd𝐶)) ∈ V
62 ovex 6718 . . . . . . 7 ((1st𝐶) ·N (2nd𝐴)) ∈ V
63 ovex 6718 . . . . . . 7 ((2nd𝐵) ·N (2nd𝐶)) ∈ V
64 distrpi 9758 . . . . . . 7 (𝑥 ·N (𝑦 +N 𝑧)) = ((𝑥 ·N 𝑦) +N (𝑥 ·N 𝑧))
6561, 62, 63, 48, 64caovdir 6910 . . . . . 6 ((((1st𝐴) ·N (2nd𝐶)) +N ((1st𝐶) ·N (2nd𝐴))) ·N ((2nd𝐵) ·N (2nd𝐶))) = ((((1st𝐴) ·N (2nd𝐶)) ·N ((2nd𝐵) ·N (2nd𝐶))) +N (((1st𝐶) ·N (2nd𝐴)) ·N ((2nd𝐵) ·N (2nd𝐶))))
6659, 60, 653eqtr4i 2683 . . . . 5 ((((2nd𝐴) ·N (2nd𝐶)) ·N ((1st𝐶) ·N (2nd𝐵))) +N (((2nd𝐶) ·N (2nd𝐶)) ·N ((1st𝐴) ·N (2nd𝐵)))) = ((((1st𝐴) ·N (2nd𝐶)) +N ((1st𝐶) ·N (2nd𝐴))) ·N ((2nd𝐵) ·N (2nd𝐶)))
67 addcompi 9754 . . . . . 6 ((((2nd𝐴) ·N (2nd𝐶)) ·N ((1st𝐶) ·N (2nd𝐵))) +N (((2nd𝐴) ·N (2nd𝐶)) ·N ((1st𝐵) ·N (2nd𝐶)))) = ((((2nd𝐴) ·N (2nd𝐶)) ·N ((1st𝐵) ·N (2nd𝐶))) +N (((2nd𝐴) ·N (2nd𝐶)) ·N ((1st𝐶) ·N (2nd𝐵))))
68 mulasspi 9757 . . . . . . . 8 (((2nd𝐶) ·N (2nd𝐶)) ·N ((1st𝐵) ·N (2nd𝐴))) = ((2nd𝐶) ·N ((2nd𝐶) ·N ((1st𝐵) ·N (2nd𝐴))))
69 mulcompi 9756 . . . . . . . . . 10 ((2nd𝐶) ·N ((2nd𝐶) ·N ((1st𝐵) ·N (2nd𝐴)))) = (((2nd𝐶) ·N ((1st𝐵) ·N (2nd𝐴))) ·N (2nd𝐶))
70 mulasspi 9757 . . . . . . . . . . . 12 (((2nd𝐴) ·N (2nd𝐶)) ·N (1st𝐵)) = ((2nd𝐴) ·N ((2nd𝐶) ·N (1st𝐵)))
71 mulcompi 9756 . . . . . . . . . . . 12 ((2nd𝐴) ·N ((2nd𝐶) ·N (1st𝐵))) = (((2nd𝐶) ·N (1st𝐵)) ·N (2nd𝐴))
72 mulasspi 9757 . . . . . . . . . . . 12 (((2nd𝐶) ·N (1st𝐵)) ·N (2nd𝐴)) = ((2nd𝐶) ·N ((1st𝐵) ·N (2nd𝐴)))
7370, 71, 723eqtrri 2678 . . . . . . . . . . 11 ((2nd𝐶) ·N ((1st𝐵) ·N (2nd𝐴))) = (((2nd𝐴) ·N (2nd𝐶)) ·N (1st𝐵))
7473oveq1i 6700 . . . . . . . . . 10 (((2nd𝐶) ·N ((1st𝐵) ·N (2nd𝐴))) ·N (2nd𝐶)) = ((((2nd𝐴) ·N (2nd𝐶)) ·N (1st𝐵)) ·N (2nd𝐶))
7569, 74eqtri 2673 . . . . . . . . 9 ((2nd𝐶) ·N ((2nd𝐶) ·N ((1st𝐵) ·N (2nd𝐴)))) = ((((2nd𝐴) ·N (2nd𝐶)) ·N (1st𝐵)) ·N (2nd𝐶))
76 mulasspi 9757 . . . . . . . . 9 ((((2nd𝐴) ·N (2nd𝐶)) ·N (1st𝐵)) ·N (2nd𝐶)) = (((2nd𝐴) ·N (2nd𝐶)) ·N ((1st𝐵) ·N (2nd𝐶)))
7775, 76eqtri 2673 . . . . . . . 8 ((2nd𝐶) ·N ((2nd𝐶) ·N ((1st𝐵) ·N (2nd𝐴)))) = (((2nd𝐴) ·N (2nd𝐶)) ·N ((1st𝐵) ·N (2nd𝐶)))
7868, 77eqtri 2673 . . . . . . 7 (((2nd𝐶) ·N (2nd𝐶)) ·N ((1st𝐵) ·N (2nd𝐴))) = (((2nd𝐴) ·N (2nd𝐶)) ·N ((1st𝐵) ·N (2nd𝐶)))
7978oveq2i 6701 . . . . . 6 ((((2nd𝐴) ·N (2nd𝐶)) ·N ((1st𝐶) ·N (2nd𝐵))) +N (((2nd𝐶) ·N (2nd𝐶)) ·N ((1st𝐵) ·N (2nd𝐴)))) = ((((2nd𝐴) ·N (2nd𝐶)) ·N ((1st𝐶) ·N (2nd𝐵))) +N (((2nd𝐴) ·N (2nd𝐶)) ·N ((1st𝐵) ·N (2nd𝐶))))
80 distrpi 9758 . . . . . 6 (((2nd𝐴) ·N (2nd𝐶)) ·N (((1st𝐵) ·N (2nd𝐶)) +N ((1st𝐶) ·N (2nd𝐵)))) = ((((2nd𝐴) ·N (2nd𝐶)) ·N ((1st𝐵) ·N (2nd𝐶))) +N (((2nd𝐴) ·N (2nd𝐶)) ·N ((1st𝐶) ·N (2nd𝐵))))
8167, 79, 803eqtr4i 2683 . . . . 5 ((((2nd𝐴) ·N (2nd𝐶)) ·N ((1st𝐶) ·N (2nd𝐵))) +N (((2nd𝐶) ·N (2nd𝐶)) ·N ((1st𝐵) ·N (2nd𝐴)))) = (((2nd𝐴) ·N (2nd𝐶)) ·N (((1st𝐵) ·N (2nd𝐶)) +N ((1st𝐶) ·N (2nd𝐵))))
8266, 81eqeq12i 2665 . . . 4 (((((2nd𝐴) ·N (2nd𝐶)) ·N ((1st𝐶) ·N (2nd𝐵))) +N (((2nd𝐶) ·N (2nd𝐶)) ·N ((1st𝐴) ·N (2nd𝐵)))) = ((((2nd𝐴) ·N (2nd𝐶)) ·N ((1st𝐶) ·N (2nd𝐵))) +N (((2nd𝐶) ·N (2nd𝐶)) ·N ((1st𝐵) ·N (2nd𝐴)))) ↔ ((((1st𝐴) ·N (2nd𝐶)) +N ((1st𝐶) ·N (2nd𝐴))) ·N ((2nd𝐵) ·N (2nd𝐶))) = (((2nd𝐴) ·N (2nd𝐶)) ·N (((1st𝐵) ·N (2nd𝐶)) +N ((1st𝐶) ·N (2nd𝐵)))))
83 mulclpi 9753 . . . . . 6 ((((2nd𝐴) ·N (2nd𝐶)) ∈ N ∧ ((1st𝐶) ·N (2nd𝐵)) ∈ N) → (((2nd𝐴) ·N (2nd𝐶)) ·N ((1st𝐶) ·N (2nd𝐵))) ∈ N)
8416, 24, 83syl2anc 694 . . . . 5 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N) ∧ 𝐶 ∈ (N × N)) → (((2nd𝐴) ·N (2nd𝐶)) ·N ((1st𝐶) ·N (2nd𝐵))) ∈ N)
85 mulclpi 9753 . . . . . 6 ((((2nd𝐶) ·N (2nd𝐶)) ∈ N ∧ ((1st𝐴) ·N (2nd𝐵)) ∈ N) → (((2nd𝐶) ·N (2nd𝐶)) ·N ((1st𝐴) ·N (2nd𝐵))) ∈ N)
8639, 41, 85syl2anc 694 . . . . 5 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N) ∧ 𝐶 ∈ (N × N)) → (((2nd𝐶) ·N (2nd𝐶)) ·N ((1st𝐴) ·N (2nd𝐵))) ∈ N)
87 addcanpi 9759 . . . . 5 (((((2nd𝐴) ·N (2nd𝐶)) ·N ((1st𝐶) ·N (2nd𝐵))) ∈ N ∧ (((2nd𝐶) ·N (2nd𝐶)) ·N ((1st𝐴) ·N (2nd𝐵))) ∈ N) → (((((2nd𝐴) ·N (2nd𝐶)) ·N ((1st𝐶) ·N (2nd𝐵))) +N (((2nd𝐶) ·N (2nd𝐶)) ·N ((1st𝐴) ·N (2nd𝐵)))) = ((((2nd𝐴) ·N (2nd𝐶)) ·N ((1st𝐶) ·N (2nd𝐵))) +N (((2nd𝐶) ·N (2nd𝐶)) ·N ((1st𝐵) ·N (2nd𝐴)))) ↔ (((2nd𝐶) ·N (2nd𝐶)) ·N ((1st𝐴) ·N (2nd𝐵))) = (((2nd𝐶) ·N (2nd𝐶)) ·N ((1st𝐵) ·N (2nd𝐴)))))
8884, 86, 87syl2anc 694 . . . 4 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N) ∧ 𝐶 ∈ (N × N)) → (((((2nd𝐴) ·N (2nd𝐶)) ·N ((1st𝐶) ·N (2nd𝐵))) +N (((2nd𝐶) ·N (2nd𝐶)) ·N ((1st𝐴) ·N (2nd𝐵)))) = ((((2nd𝐴) ·N (2nd𝐶)) ·N ((1st𝐶) ·N (2nd𝐵))) +N (((2nd𝐶) ·N (2nd𝐶)) ·N ((1st𝐵) ·N (2nd𝐴)))) ↔ (((2nd𝐶) ·N (2nd𝐶)) ·N ((1st𝐴) ·N (2nd𝐵))) = (((2nd𝐶) ·N (2nd𝐶)) ·N ((1st𝐵) ·N (2nd𝐴)))))
8982, 88syl5rbbr 275 . . 3 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N) ∧ 𝐶 ∈ (N × N)) → ((((2nd𝐶) ·N (2nd𝐶)) ·N ((1st𝐴) ·N (2nd𝐵))) = (((2nd𝐶) ·N (2nd𝐶)) ·N ((1st𝐵) ·N (2nd𝐴))) ↔ ((((1st𝐴) ·N (2nd𝐶)) +N ((1st𝐶) ·N (2nd𝐴))) ·N ((2nd𝐵) ·N (2nd𝐶))) = (((2nd𝐴) ·N (2nd𝐶)) ·N (((1st𝐵) ·N (2nd𝐶)) +N ((1st𝐶) ·N (2nd𝐵))))))
9037, 43, 893bitr2d 296 . 2 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N) ∧ 𝐶 ∈ (N × N)) → (𝐴 ~Q 𝐵 ↔ ((((1st𝐴) ·N (2nd𝐶)) +N ((1st𝐶) ·N (2nd𝐴))) ·N ((2nd𝐵) ·N (2nd𝐶))) = (((2nd𝐴) ·N (2nd𝐶)) ·N (((1st𝐵) ·N (2nd𝐶)) +N ((1st𝐶) ·N (2nd𝐵))))))
9130, 35, 903bitr4rd 301 1 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N) ∧ 𝐶 ∈ (N × N)) → (𝐴 ~Q 𝐵 ↔ (𝐴 +pQ 𝐶) ~Q (𝐵 +pQ 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  w3a 1054   = wceq 1523  wcel 2030  cop 4216   class class class wbr 4685   × cxp 5141  cfv 5926  (class class class)co 6690  1st c1st 7208  2nd c2nd 7209  Ncnpi 9704   +N cpli 9705   ·N cmi 9706   +pQ cplpq 9708   ~Q ceq 9711
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-oadd 7609  df-omul 7610  df-ni 9732  df-pli 9733  df-mi 9734  df-plpq 9768  df-enq 9771
This theorem is referenced by:  adderpq  9816
  Copyright terms: Public domain W3C validator