![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > addcompq | Structured version Visualization version GIF version |
Description: Addition of positive fractions is commutative. (Contributed by NM, 30-Aug-1995.) (Revised by Mario Carneiro, 28-Apr-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
addcompq | ⊢ (𝐴 +pQ 𝐵) = (𝐵 +pQ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | addcompi 9754 | . . . 4 ⊢ (((1st ‘𝐴) ·N (2nd ‘𝐵)) +N ((1st ‘𝐵) ·N (2nd ‘𝐴))) = (((1st ‘𝐵) ·N (2nd ‘𝐴)) +N ((1st ‘𝐴) ·N (2nd ‘𝐵))) | |
2 | mulcompi 9756 | . . . 4 ⊢ ((2nd ‘𝐴) ·N (2nd ‘𝐵)) = ((2nd ‘𝐵) ·N (2nd ‘𝐴)) | |
3 | 1, 2 | opeq12i 4438 | . . 3 ⊢ 〈(((1st ‘𝐴) ·N (2nd ‘𝐵)) +N ((1st ‘𝐵) ·N (2nd ‘𝐴))), ((2nd ‘𝐴) ·N (2nd ‘𝐵))〉 = 〈(((1st ‘𝐵) ·N (2nd ‘𝐴)) +N ((1st ‘𝐴) ·N (2nd ‘𝐵))), ((2nd ‘𝐵) ·N (2nd ‘𝐴))〉 |
4 | addpipq2 9796 | . . 3 ⊢ ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐴 +pQ 𝐵) = 〈(((1st ‘𝐴) ·N (2nd ‘𝐵)) +N ((1st ‘𝐵) ·N (2nd ‘𝐴))), ((2nd ‘𝐴) ·N (2nd ‘𝐵))〉) | |
5 | addpipq2 9796 | . . . 4 ⊢ ((𝐵 ∈ (N × N) ∧ 𝐴 ∈ (N × N)) → (𝐵 +pQ 𝐴) = 〈(((1st ‘𝐵) ·N (2nd ‘𝐴)) +N ((1st ‘𝐴) ·N (2nd ‘𝐵))), ((2nd ‘𝐵) ·N (2nd ‘𝐴))〉) | |
6 | 5 | ancoms 468 | . . 3 ⊢ ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐵 +pQ 𝐴) = 〈(((1st ‘𝐵) ·N (2nd ‘𝐴)) +N ((1st ‘𝐴) ·N (2nd ‘𝐵))), ((2nd ‘𝐵) ·N (2nd ‘𝐴))〉) |
7 | 3, 4, 6 | 3eqtr4a 2711 | . 2 ⊢ ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐴 +pQ 𝐵) = (𝐵 +pQ 𝐴)) |
8 | addpqf 9804 | . . . 4 ⊢ +pQ :((N × N) × (N × N))⟶(N × N) | |
9 | 8 | fdmi 6090 | . . 3 ⊢ dom +pQ = ((N × N) × (N × N)) |
10 | 9 | ndmovcom 6863 | . 2 ⊢ (¬ (𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐴 +pQ 𝐵) = (𝐵 +pQ 𝐴)) |
11 | 7, 10 | pm2.61i 176 | 1 ⊢ (𝐴 +pQ 𝐵) = (𝐵 +pQ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 383 = wceq 1523 ∈ wcel 2030 〈cop 4216 × cxp 5141 ‘cfv 5926 (class class class)co 6690 1st c1st 7208 2nd c2nd 7209 Ncnpi 9704 +N cpli 9705 ·N cmi 9706 +pQ cplpq 9708 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-reu 2948 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-om 7108 df-1st 7210 df-2nd 7211 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-oadd 7609 df-omul 7610 df-ni 9732 df-pli 9733 df-mi 9734 df-plpq 9768 |
This theorem is referenced by: addcomnq 9811 adderpq 9816 |
Copyright terms: Public domain | W3C validator |