MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addcomi Structured version   Visualization version   GIF version

Theorem addcomi 9909
Description: Addition commutes. Based on ideas by Eric Schmidt. (Contributed by Scott Fenton, 3-Jan-2013.)
Hypotheses
Ref Expression
mul.1 𝐴 ∈ ℂ
mul.2 𝐵 ∈ ℂ
Assertion
Ref Expression
addcomi (𝐴 + 𝐵) = (𝐵 + 𝐴)

Proof of Theorem addcomi
StepHypRef Expression
1 mul.1 . 2 𝐴 ∈ ℂ
2 mul.2 . 2 𝐵 ∈ ℂ
3 addcom 9904 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) = (𝐵 + 𝐴))
41, 2, 3mp2an 695 1 (𝐴 + 𝐵) = (𝐵 + 𝐴)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1468  wcel 1937  (class class class)co 6363  cc 9622   + caddc 9627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1698  ax-4 1711  ax-5 1789  ax-6 1836  ax-7 1883  ax-8 1939  ax-9 1946  ax-10 1965  ax-11 1970  ax-12 1983  ax-13 2137  ax-ext 2485  ax-sep 4558  ax-nul 4567  ax-pow 4619  ax-pr 4680  ax-un 6659  ax-resscn 9681  ax-1cn 9682  ax-icn 9683  ax-addcl 9684  ax-addrcl 9685  ax-mulcl 9686  ax-mulrcl 9687  ax-mulcom 9688  ax-addass 9689  ax-mulass 9690  ax-distr 9691  ax-i2m1 9692  ax-1ne0 9693  ax-1rid 9694  ax-rnegex 9695  ax-rrecex 9696  ax-cnre 9697  ax-pre-lttri 9698  ax-pre-lttrn 9699  ax-pre-ltadd 9700
This theorem depends on definitions:  df-bi 192  df-or 379  df-an 380  df-3or 1022  df-3an 1023  df-tru 1471  df-ex 1693  df-nf 1697  df-sb 1829  df-eu 2357  df-mo 2358  df-clab 2492  df-cleq 2498  df-clel 2501  df-nfc 2635  df-ne 2677  df-nel 2678  df-ral 2796  df-rex 2797  df-rab 2800  df-v 3068  df-sbc 3292  df-csb 3386  df-dif 3429  df-un 3431  df-in 3433  df-ss 3440  df-nul 3758  df-if 3909  df-pw 3980  df-sn 3996  df-pr 3998  df-op 4002  df-uni 4229  df-br 4435  df-opab 4494  df-mpt 4495  df-id 4795  df-po 4801  df-so 4802  df-xp 4886  df-rel 4887  df-cnv 4888  df-co 4889  df-dm 4890  df-rn 4891  df-res 4892  df-ima 4893  df-iota 5597  df-fun 5635  df-fn 5636  df-f 5637  df-f1 5638  df-fo 5639  df-f1o 5640  df-fv 5641  df-ov 6366  df-er 7440  df-en 7653  df-dom 7654  df-sdom 7655  df-pnf 9762  df-mnf 9763  df-ltxr 9765
This theorem is referenced by:  addcomli  9910  3m1e2  10815  4m1e3  10816  fztpval  11955  fzo0to42pr  12104  0.999...  14097  ef01bndlem  14398  modxai  15202  pcoass  22214  iblitg  22887  tangtx  23621  eff1o  23659  ang180lem2  23900  log2ublem2  24034  basellem9  24176  ppiub  24293  bposlem8  24380  lgsdir2lem1  24412  lgsdir2lem2  24413  lgsdir2lem3  24414  lgsdir2lem5  24416  ax5seglem7  25126  ipasslem10  26643  normlem2  26927  normlem3  26928  norm-ii-i  26953  normpar2i  26972  problem3  30451  problem5  30453  quad3  30454  mblfinlem3  32217  fdc  32311  stoweidlem13  38309  fourierdlem24  38429  3exp4mod41  39436  comraddi  41688
  Copyright terms: Public domain W3C validator