MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addcnsr Structured version   Visualization version   GIF version

Theorem addcnsr 10157
Description: Addition of complex numbers in terms of signed reals. (Contributed by NM, 28-May-1995.) (New usage is discouraged.)
Assertion
Ref Expression
addcnsr (((𝐴R𝐵R) ∧ (𝐶R𝐷R)) → (⟨𝐴, 𝐵⟩ + ⟨𝐶, 𝐷⟩) = ⟨(𝐴 +R 𝐶), (𝐵 +R 𝐷)⟩)

Proof of Theorem addcnsr
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑣 𝑢 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opex 5060 . 2 ⟨(𝐴 +R 𝐶), (𝐵 +R 𝐷)⟩ ∈ V
2 oveq1 6799 . . . 4 (𝑤 = 𝐴 → (𝑤 +R 𝑢) = (𝐴 +R 𝑢))
3 oveq1 6799 . . . 4 (𝑣 = 𝐵 → (𝑣 +R 𝑓) = (𝐵 +R 𝑓))
4 opeq12 4539 . . . 4 (((𝑤 +R 𝑢) = (𝐴 +R 𝑢) ∧ (𝑣 +R 𝑓) = (𝐵 +R 𝑓)) → ⟨(𝑤 +R 𝑢), (𝑣 +R 𝑓)⟩ = ⟨(𝐴 +R 𝑢), (𝐵 +R 𝑓)⟩)
52, 3, 4syl2an 575 . . 3 ((𝑤 = 𝐴𝑣 = 𝐵) → ⟨(𝑤 +R 𝑢), (𝑣 +R 𝑓)⟩ = ⟨(𝐴 +R 𝑢), (𝐵 +R 𝑓)⟩)
6 oveq2 6800 . . . 4 (𝑢 = 𝐶 → (𝐴 +R 𝑢) = (𝐴 +R 𝐶))
7 oveq2 6800 . . . 4 (𝑓 = 𝐷 → (𝐵 +R 𝑓) = (𝐵 +R 𝐷))
8 opeq12 4539 . . . 4 (((𝐴 +R 𝑢) = (𝐴 +R 𝐶) ∧ (𝐵 +R 𝑓) = (𝐵 +R 𝐷)) → ⟨(𝐴 +R 𝑢), (𝐵 +R 𝑓)⟩ = ⟨(𝐴 +R 𝐶), (𝐵 +R 𝐷)⟩)
96, 7, 8syl2an 575 . . 3 ((𝑢 = 𝐶𝑓 = 𝐷) → ⟨(𝐴 +R 𝑢), (𝐵 +R 𝑓)⟩ = ⟨(𝐴 +R 𝐶), (𝐵 +R 𝐷)⟩)
105, 9sylan9eq 2824 . 2 (((𝑤 = 𝐴𝑣 = 𝐵) ∧ (𝑢 = 𝐶𝑓 = 𝐷)) → ⟨(𝑤 +R 𝑢), (𝑣 +R 𝑓)⟩ = ⟨(𝐴 +R 𝐶), (𝐵 +R 𝐷)⟩)
11 df-add 10148 . . 3 + = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨(𝑤 +R 𝑢), (𝑣 +R 𝑓)⟩))}
12 df-c 10143 . . . . . . 7 ℂ = (R × R)
1312eleq2i 2841 . . . . . 6 (𝑥 ∈ ℂ ↔ 𝑥 ∈ (R × R))
1412eleq2i 2841 . . . . . 6 (𝑦 ∈ ℂ ↔ 𝑦 ∈ (R × R))
1513, 14anbi12i 604 . . . . 5 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ↔ (𝑥 ∈ (R × R) ∧ 𝑦 ∈ (R × R)))
1615anbi1i 602 . . . 4 (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨(𝑤 +R 𝑢), (𝑣 +R 𝑓)⟩)) ↔ ((𝑥 ∈ (R × R) ∧ 𝑦 ∈ (R × R)) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨(𝑤 +R 𝑢), (𝑣 +R 𝑓)⟩)))
1716oprabbii 6856 . . 3 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨(𝑤 +R 𝑢), (𝑣 +R 𝑓)⟩))} = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ (R × R) ∧ 𝑦 ∈ (R × R)) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨(𝑤 +R 𝑢), (𝑣 +R 𝑓)⟩))}
1811, 17eqtri 2792 . 2 + = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ (R × R) ∧ 𝑦 ∈ (R × R)) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨(𝑤 +R 𝑢), (𝑣 +R 𝑓)⟩))}
191, 10, 18ov3 6943 1 (((𝐴R𝐵R) ∧ (𝐶R𝐷R)) → (⟨𝐴, 𝐵⟩ + ⟨𝐶, 𝐷⟩) = ⟨(𝐴 +R 𝐶), (𝐵 +R 𝐷)⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1630  wex 1851  wcel 2144  cop 4320   × cxp 5247  (class class class)co 6792  {coprab 6793  Rcnr 9888   +R cplr 9892  cc 10135   + caddc 10140
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-sep 4912  ax-nul 4920  ax-pr 5034
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ral 3065  df-rex 3066  df-rab 3069  df-v 3351  df-sbc 3586  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-nul 4062  df-if 4224  df-sn 4315  df-pr 4317  df-op 4321  df-uni 4573  df-br 4785  df-opab 4845  df-id 5157  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-iota 5994  df-fun 6033  df-fv 6039  df-ov 6795  df-oprab 6796  df-c 10143  df-add 10148
This theorem is referenced by:  addresr  10160  addcnsrec  10165  axaddf  10167  axcnre  10186
  Copyright terms: Public domain W3C validator