MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addcn2 Structured version   Visualization version   GIF version

Theorem addcn2 14523
Description: Complex number addition is a continuous function. Part of Proposition 14-4.16 of [Gleason] p. 243. (We write out the definition directly because df-cn 21233 and df-cncf 22882 are not yet available to us. See addcn 22869 for the abbreviated version.) (Contributed by Mario Carneiro, 31-Jan-2014.)
Assertion
Ref Expression
addcn2 ((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ∃𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((abs‘(𝑢𝐵)) < 𝑦 ∧ (abs‘(𝑣𝐶)) < 𝑧) → (abs‘((𝑢 + 𝑣) − (𝐵 + 𝐶))) < 𝐴))
Distinct variable groups:   𝑣,𝑢,𝑦,𝑧,𝐴   𝑢,𝐵,𝑣,𝑦,𝑧   𝑢,𝐶,𝑣,𝑦,𝑧

Proof of Theorem addcn2
StepHypRef Expression
1 rphalfcl 12051 . . 3 (𝐴 ∈ ℝ+ → (𝐴 / 2) ∈ ℝ+)
213ad2ant1 1128 . 2 ((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 / 2) ∈ ℝ+)
3 simprl 811 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → 𝑢 ∈ ℂ)
4 simpl2 1230 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → 𝐵 ∈ ℂ)
5 simprr 813 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → 𝑣 ∈ ℂ)
63, 4, 5pnpcan2d 10622 . . . . . . 7 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → ((𝑢 + 𝑣) − (𝐵 + 𝑣)) = (𝑢𝐵))
76fveq2d 6356 . . . . . 6 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (abs‘((𝑢 + 𝑣) − (𝐵 + 𝑣))) = (abs‘(𝑢𝐵)))
87breq1d 4814 . . . . 5 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → ((abs‘((𝑢 + 𝑣) − (𝐵 + 𝑣))) < (𝐴 / 2) ↔ (abs‘(𝑢𝐵)) < (𝐴 / 2)))
9 simpl3 1232 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → 𝐶 ∈ ℂ)
104, 5, 9pnpcand 10621 . . . . . . 7 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → ((𝐵 + 𝑣) − (𝐵 + 𝐶)) = (𝑣𝐶))
1110fveq2d 6356 . . . . . 6 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (abs‘((𝐵 + 𝑣) − (𝐵 + 𝐶))) = (abs‘(𝑣𝐶)))
1211breq1d 4814 . . . . 5 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → ((abs‘((𝐵 + 𝑣) − (𝐵 + 𝐶))) < (𝐴 / 2) ↔ (abs‘(𝑣𝐶)) < (𝐴 / 2)))
138, 12anbi12d 749 . . . 4 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (((abs‘((𝑢 + 𝑣) − (𝐵 + 𝑣))) < (𝐴 / 2) ∧ (abs‘((𝐵 + 𝑣) − (𝐵 + 𝐶))) < (𝐴 / 2)) ↔ ((abs‘(𝑢𝐵)) < (𝐴 / 2) ∧ (abs‘(𝑣𝐶)) < (𝐴 / 2))))
14 addcl 10210 . . . . . 6 ((𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ) → (𝑢 + 𝑣) ∈ ℂ)
1514adantl 473 . . . . 5 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (𝑢 + 𝑣) ∈ ℂ)
164, 9addcld 10251 . . . . 5 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (𝐵 + 𝐶) ∈ ℂ)
174, 5addcld 10251 . . . . 5 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (𝐵 + 𝑣) ∈ ℂ)
18 simpl1 1228 . . . . . 6 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → 𝐴 ∈ ℝ+)
1918rpred 12065 . . . . 5 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → 𝐴 ∈ ℝ)
20 abs3lem 14277 . . . . 5 ((((𝑢 + 𝑣) ∈ ℂ ∧ (𝐵 + 𝐶) ∈ ℂ) ∧ ((𝐵 + 𝑣) ∈ ℂ ∧ 𝐴 ∈ ℝ)) → (((abs‘((𝑢 + 𝑣) − (𝐵 + 𝑣))) < (𝐴 / 2) ∧ (abs‘((𝐵 + 𝑣) − (𝐵 + 𝐶))) < (𝐴 / 2)) → (abs‘((𝑢 + 𝑣) − (𝐵 + 𝐶))) < 𝐴))
2115, 16, 17, 19, 20syl22anc 1478 . . . 4 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (((abs‘((𝑢 + 𝑣) − (𝐵 + 𝑣))) < (𝐴 / 2) ∧ (abs‘((𝐵 + 𝑣) − (𝐵 + 𝐶))) < (𝐴 / 2)) → (abs‘((𝑢 + 𝑣) − (𝐵 + 𝐶))) < 𝐴))
2213, 21sylbird 250 . . 3 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (((abs‘(𝑢𝐵)) < (𝐴 / 2) ∧ (abs‘(𝑣𝐶)) < (𝐴 / 2)) → (abs‘((𝑢 + 𝑣) − (𝐵 + 𝐶))) < 𝐴))
2322ralrimivva 3109 . 2 ((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ∀𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((abs‘(𝑢𝐵)) < (𝐴 / 2) ∧ (abs‘(𝑣𝐶)) < (𝐴 / 2)) → (abs‘((𝑢 + 𝑣) − (𝐵 + 𝐶))) < 𝐴))
24 breq2 4808 . . . . . 6 (𝑦 = (𝐴 / 2) → ((abs‘(𝑢𝐵)) < 𝑦 ↔ (abs‘(𝑢𝐵)) < (𝐴 / 2)))
2524anbi1d 743 . . . . 5 (𝑦 = (𝐴 / 2) → (((abs‘(𝑢𝐵)) < 𝑦 ∧ (abs‘(𝑣𝐶)) < 𝑧) ↔ ((abs‘(𝑢𝐵)) < (𝐴 / 2) ∧ (abs‘(𝑣𝐶)) < 𝑧)))
2625imbi1d 330 . . . 4 (𝑦 = (𝐴 / 2) → ((((abs‘(𝑢𝐵)) < 𝑦 ∧ (abs‘(𝑣𝐶)) < 𝑧) → (abs‘((𝑢 + 𝑣) − (𝐵 + 𝐶))) < 𝐴) ↔ (((abs‘(𝑢𝐵)) < (𝐴 / 2) ∧ (abs‘(𝑣𝐶)) < 𝑧) → (abs‘((𝑢 + 𝑣) − (𝐵 + 𝐶))) < 𝐴)))
27262ralbidv 3127 . . 3 (𝑦 = (𝐴 / 2) → (∀𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((abs‘(𝑢𝐵)) < 𝑦 ∧ (abs‘(𝑣𝐶)) < 𝑧) → (abs‘((𝑢 + 𝑣) − (𝐵 + 𝐶))) < 𝐴) ↔ ∀𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((abs‘(𝑢𝐵)) < (𝐴 / 2) ∧ (abs‘(𝑣𝐶)) < 𝑧) → (abs‘((𝑢 + 𝑣) − (𝐵 + 𝐶))) < 𝐴)))
28 breq2 4808 . . . . . 6 (𝑧 = (𝐴 / 2) → ((abs‘(𝑣𝐶)) < 𝑧 ↔ (abs‘(𝑣𝐶)) < (𝐴 / 2)))
2928anbi2d 742 . . . . 5 (𝑧 = (𝐴 / 2) → (((abs‘(𝑢𝐵)) < (𝐴 / 2) ∧ (abs‘(𝑣𝐶)) < 𝑧) ↔ ((abs‘(𝑢𝐵)) < (𝐴 / 2) ∧ (abs‘(𝑣𝐶)) < (𝐴 / 2))))
3029imbi1d 330 . . . 4 (𝑧 = (𝐴 / 2) → ((((abs‘(𝑢𝐵)) < (𝐴 / 2) ∧ (abs‘(𝑣𝐶)) < 𝑧) → (abs‘((𝑢 + 𝑣) − (𝐵 + 𝐶))) < 𝐴) ↔ (((abs‘(𝑢𝐵)) < (𝐴 / 2) ∧ (abs‘(𝑣𝐶)) < (𝐴 / 2)) → (abs‘((𝑢 + 𝑣) − (𝐵 + 𝐶))) < 𝐴)))
31302ralbidv 3127 . . 3 (𝑧 = (𝐴 / 2) → (∀𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((abs‘(𝑢𝐵)) < (𝐴 / 2) ∧ (abs‘(𝑣𝐶)) < 𝑧) → (abs‘((𝑢 + 𝑣) − (𝐵 + 𝐶))) < 𝐴) ↔ ∀𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((abs‘(𝑢𝐵)) < (𝐴 / 2) ∧ (abs‘(𝑣𝐶)) < (𝐴 / 2)) → (abs‘((𝑢 + 𝑣) − (𝐵 + 𝐶))) < 𝐴)))
3227, 31rspc2ev 3463 . 2 (((𝐴 / 2) ∈ ℝ+ ∧ (𝐴 / 2) ∈ ℝ+ ∧ ∀𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((abs‘(𝑢𝐵)) < (𝐴 / 2) ∧ (abs‘(𝑣𝐶)) < (𝐴 / 2)) → (abs‘((𝑢 + 𝑣) − (𝐵 + 𝐶))) < 𝐴)) → ∃𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((abs‘(𝑢𝐵)) < 𝑦 ∧ (abs‘(𝑣𝐶)) < 𝑧) → (abs‘((𝑢 + 𝑣) − (𝐵 + 𝐶))) < 𝐴))
332, 2, 23, 32syl3anc 1477 1 ((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ∃𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((abs‘(𝑢𝐵)) < 𝑦 ∧ (abs‘(𝑣𝐶)) < 𝑧) → (abs‘((𝑢 + 𝑣) − (𝐵 + 𝐶))) < 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1072   = wceq 1632  wcel 2139  wral 3050  wrex 3051   class class class wbr 4804  cfv 6049  (class class class)co 6813  cc 10126  cr 10127   + caddc 10131   < clt 10266  cmin 10458   / cdiv 10876  2c2 11262  +crp 12025  abscabs 14173
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205  ax-pre-sup 10206
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-om 7231  df-2nd 7334  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-er 7911  df-en 8122  df-dom 8123  df-sdom 8124  df-sup 8513  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-div 10877  df-nn 11213  df-2 11271  df-3 11272  df-n0 11485  df-z 11570  df-uz 11880  df-rp 12026  df-seq 12996  df-exp 13055  df-cj 14038  df-re 14039  df-im 14040  df-sqrt 14174  df-abs 14175
This theorem is referenced by:  subcn2  14524  climadd  14561  rlimadd  14572  addcn  22869
  Copyright terms: Public domain W3C validator