MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addclpi Structured version   Visualization version   GIF version

Theorem addclpi 9752
Description: Closure of addition of positive integers. (Contributed by NM, 18-Oct-1995.) (New usage is discouraged.)
Assertion
Ref Expression
addclpi ((𝐴N𝐵N) → (𝐴 +N 𝐵) ∈ N)

Proof of Theorem addclpi
StepHypRef Expression
1 addpiord 9744 . 2 ((𝐴N𝐵N) → (𝐴 +N 𝐵) = (𝐴 +𝑜 𝐵))
2 pinn 9738 . . 3 (𝐴N𝐴 ∈ ω)
3 pinn 9738 . . . . 5 (𝐵N𝐵 ∈ ω)
4 nnacl 7736 . . . . 5 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 +𝑜 𝐵) ∈ ω)
53, 4sylan2 490 . . . 4 ((𝐴 ∈ ω ∧ 𝐵N) → (𝐴 +𝑜 𝐵) ∈ ω)
6 elni2 9737 . . . . 5 (𝐵N ↔ (𝐵 ∈ ω ∧ ∅ ∈ 𝐵))
7 nnaordi 7743 . . . . . . . 8 ((𝐵 ∈ ω ∧ 𝐴 ∈ ω) → (∅ ∈ 𝐵 → (𝐴 +𝑜 ∅) ∈ (𝐴 +𝑜 𝐵)))
8 ne0i 3954 . . . . . . . 8 ((𝐴 +𝑜 ∅) ∈ (𝐴 +𝑜 𝐵) → (𝐴 +𝑜 𝐵) ≠ ∅)
97, 8syl6 35 . . . . . . 7 ((𝐵 ∈ ω ∧ 𝐴 ∈ ω) → (∅ ∈ 𝐵 → (𝐴 +𝑜 𝐵) ≠ ∅))
109expcom 450 . . . . . 6 (𝐴 ∈ ω → (𝐵 ∈ ω → (∅ ∈ 𝐵 → (𝐴 +𝑜 𝐵) ≠ ∅)))
1110imp32 448 . . . . 5 ((𝐴 ∈ ω ∧ (𝐵 ∈ ω ∧ ∅ ∈ 𝐵)) → (𝐴 +𝑜 𝐵) ≠ ∅)
126, 11sylan2b 491 . . . 4 ((𝐴 ∈ ω ∧ 𝐵N) → (𝐴 +𝑜 𝐵) ≠ ∅)
13 elni 9736 . . . 4 ((𝐴 +𝑜 𝐵) ∈ N ↔ ((𝐴 +𝑜 𝐵) ∈ ω ∧ (𝐴 +𝑜 𝐵) ≠ ∅))
145, 12, 13sylanbrc 699 . . 3 ((𝐴 ∈ ω ∧ 𝐵N) → (𝐴 +𝑜 𝐵) ∈ N)
152, 14sylan 487 . 2 ((𝐴N𝐵N) → (𝐴 +𝑜 𝐵) ∈ N)
161, 15eqeltrd 2730 1 ((𝐴N𝐵N) → (𝐴 +N 𝐵) ∈ N)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  wcel 2030  wne 2823  c0 3948  (class class class)co 6690  ωcom 7107   +𝑜 coa 7602  Ncnpi 9704   +N cpli 9705
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-oadd 7609  df-ni 9732  df-pli 9733
This theorem is referenced by:  addasspi  9755  distrpi  9758  addcanpi  9759  ltapi  9763  1lt2pi  9765  indpi  9767  addpqf  9804  adderpqlem  9814  addassnq  9818  distrnq  9821  1lt2nq  9833  archnq  9840  prlem934  9893
  Copyright terms: Public domain W3C validator