![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > addclpi | Structured version Visualization version GIF version |
Description: Closure of addition of positive integers. (Contributed by NM, 18-Oct-1995.) (New usage is discouraged.) |
Ref | Expression |
---|---|
addclpi | ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 +N 𝐵) ∈ N) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | addpiord 9744 | . 2 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 +N 𝐵) = (𝐴 +𝑜 𝐵)) | |
2 | pinn 9738 | . . 3 ⊢ (𝐴 ∈ N → 𝐴 ∈ ω) | |
3 | pinn 9738 | . . . . 5 ⊢ (𝐵 ∈ N → 𝐵 ∈ ω) | |
4 | nnacl 7736 | . . . . 5 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 +𝑜 𝐵) ∈ ω) | |
5 | 3, 4 | sylan2 490 | . . . 4 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ N) → (𝐴 +𝑜 𝐵) ∈ ω) |
6 | elni2 9737 | . . . . 5 ⊢ (𝐵 ∈ N ↔ (𝐵 ∈ ω ∧ ∅ ∈ 𝐵)) | |
7 | nnaordi 7743 | . . . . . . . 8 ⊢ ((𝐵 ∈ ω ∧ 𝐴 ∈ ω) → (∅ ∈ 𝐵 → (𝐴 +𝑜 ∅) ∈ (𝐴 +𝑜 𝐵))) | |
8 | ne0i 3954 | . . . . . . . 8 ⊢ ((𝐴 +𝑜 ∅) ∈ (𝐴 +𝑜 𝐵) → (𝐴 +𝑜 𝐵) ≠ ∅) | |
9 | 7, 8 | syl6 35 | . . . . . . 7 ⊢ ((𝐵 ∈ ω ∧ 𝐴 ∈ ω) → (∅ ∈ 𝐵 → (𝐴 +𝑜 𝐵) ≠ ∅)) |
10 | 9 | expcom 450 | . . . . . 6 ⊢ (𝐴 ∈ ω → (𝐵 ∈ ω → (∅ ∈ 𝐵 → (𝐴 +𝑜 𝐵) ≠ ∅))) |
11 | 10 | imp32 448 | . . . . 5 ⊢ ((𝐴 ∈ ω ∧ (𝐵 ∈ ω ∧ ∅ ∈ 𝐵)) → (𝐴 +𝑜 𝐵) ≠ ∅) |
12 | 6, 11 | sylan2b 491 | . . . 4 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ N) → (𝐴 +𝑜 𝐵) ≠ ∅) |
13 | elni 9736 | . . . 4 ⊢ ((𝐴 +𝑜 𝐵) ∈ N ↔ ((𝐴 +𝑜 𝐵) ∈ ω ∧ (𝐴 +𝑜 𝐵) ≠ ∅)) | |
14 | 5, 12, 13 | sylanbrc 699 | . . 3 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ N) → (𝐴 +𝑜 𝐵) ∈ N) |
15 | 2, 14 | sylan 487 | . 2 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 +𝑜 𝐵) ∈ N) |
16 | 1, 15 | eqeltrd 2730 | 1 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 +N 𝐵) ∈ N) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∈ wcel 2030 ≠ wne 2823 ∅c0 3948 (class class class)co 6690 ωcom 7107 +𝑜 coa 7602 Ncnpi 9704 +N cpli 9705 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-reu 2948 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-om 7108 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-oadd 7609 df-ni 9732 df-pli 9733 |
This theorem is referenced by: addasspi 9755 distrpi 9758 addcanpi 9759 ltapi 9763 1lt2pi 9765 indpi 9767 addpqf 9804 adderpqlem 9814 addassnq 9818 distrnq 9821 1lt2nq 9833 archnq 9840 prlem934 9893 |
Copyright terms: Public domain | W3C validator |