![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > addcl | Structured version Visualization version GIF version |
Description: Alias for ax-addcl 10034, for naming consistency with addcli 10082. Use this theorem instead of ax-addcl 10034 or axaddcl 10010. (Contributed by NM, 10-Mar-2008.) |
Ref | Expression |
---|---|
addcl | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-addcl 10034 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∈ wcel 2030 (class class class)co 6690 ℂcc 9972 + caddc 9977 |
This theorem was proved from axioms: ax-addcl 10034 |
This theorem is referenced by: adddir 10069 0cn 10070 addcli 10082 addcld 10097 muladd11 10244 peano2cn 10246 muladd11r 10287 add4 10294 0cnALT 10308 negeu 10309 pncan 10325 2addsub 10333 addsubeq4 10334 nppcan2 10350 ppncan 10361 muladd 10500 mulsub 10511 recex 10697 muleqadd 10709 conjmul 10780 halfaddsubcl 11302 halfaddsub 11303 serf 12869 seradd 12883 sersub 12884 binom3 13025 bernneq 13030 lswccatn0lsw 13409 revccat 13561 2cshwcshw 13617 shftlem 13852 shftval2 13859 shftval5 13862 2shfti 13864 crre 13898 crim 13899 cjadd 13925 addcj 13932 sqabsadd 14066 absreimsq 14076 absreim 14077 abstri 14114 sqreulem 14143 sqreu 14144 addcn2 14368 o1add 14388 climadd 14406 clim2ser 14429 clim2ser2 14430 isermulc2 14432 isercolllem3 14441 summolem3 14489 summolem2a 14490 fsumcl 14508 fsummulc2 14560 fsumrelem 14583 binom 14606 isumsplit 14616 risefacval2 14785 risefaccl 14790 risefallfac 14799 risefacp1 14804 binomfallfac 14816 binomrisefac 14817 bpoly3 14833 efcj 14866 ef4p 14887 tanval3 14908 efi4p 14911 sinadd 14938 cosadd 14939 tanadd 14941 addsin 14944 demoivreALT 14975 opoe 15134 pythagtriplem4 15571 pythagtriplem12 15578 pythagtriplem14 15580 pythagtriplem16 15582 gzaddcl 15688 cnaddablx 18317 cnaddabl 18318 cncrng 19815 cnperf 22670 cnlmod 22986 cnstrcvs 22987 cncvs 22991 dvaddbr 23746 dvaddf 23750 dveflem 23787 plyaddcl 24021 plymulcl 24022 plysubcl 24023 coeaddlem 24050 dgrcolem1 24074 dgrcolem2 24075 quotlem 24100 quotcl2 24102 quotdgr 24103 sinperlem 24277 ptolemy 24293 tangtx 24302 sinkpi 24316 efif1olem2 24334 logrnaddcl 24366 logneg 24379 logimul 24405 cxpadd 24470 binom4 24622 atanf 24652 atanneg 24679 atancj 24682 efiatan 24684 atanlogaddlem 24685 atanlogadd 24686 atanlogsublem 24687 atanlogsub 24688 efiatan2 24689 2efiatan 24690 tanatan 24691 cosatan 24693 cosatanne0 24694 atantan 24695 atanbndlem 24697 atans2 24703 dvatan 24707 atantayl 24709 efrlim 24741 dfef2 24742 gamcvg2lem 24830 ftalem7 24850 prmorcht 24949 bposlem9 25062 lgsquad2lem1 25154 2sqlem2 25188 wwlksext2clwwlkOLD 27022 cncph 27802 hhssnv 28249 hoadddir 28791 superpos 29341 knoppcnlem8 32615 cos2h 33530 tan2h 33531 ftc1anclem3 33617 ftc1anclem7 33621 ftc1anclem8 33622 ftc1anc 33623 fsumsermpt 40129 stirlinglem5 40613 stirlinglem7 40615 cnapbmcpd 41635 fmtnodvds 41781 opoeALTV 41919 mogoldbblem 41954 |
Copyright terms: Public domain | W3C validator |