![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > addcanpr | Structured version Visualization version GIF version |
Description: Addition cancellation law for positive reals. Proposition 9-3.5(vi) of [Gleason] p. 123. (Contributed by NM, 9-Apr-1996.) (New usage is discouraged.) |
Ref | Expression |
---|---|
addcanpr | ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → ((𝐴 +P 𝐵) = (𝐴 +P 𝐶) → 𝐵 = 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | addclpr 10041 | . . . 4 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐴 +P 𝐵) ∈ P) | |
2 | eleq1 2837 | . . . . 5 ⊢ ((𝐴 +P 𝐵) = (𝐴 +P 𝐶) → ((𝐴 +P 𝐵) ∈ P ↔ (𝐴 +P 𝐶) ∈ P)) | |
3 | dmplp 10035 | . . . . . 6 ⊢ dom +P = (P × P) | |
4 | 0npr 10015 | . . . . . 6 ⊢ ¬ ∅ ∈ P | |
5 | 3, 4 | ndmovrcl 6966 | . . . . 5 ⊢ ((𝐴 +P 𝐶) ∈ P → (𝐴 ∈ P ∧ 𝐶 ∈ P)) |
6 | 2, 5 | syl6bi 243 | . . . 4 ⊢ ((𝐴 +P 𝐵) = (𝐴 +P 𝐶) → ((𝐴 +P 𝐵) ∈ P → (𝐴 ∈ P ∧ 𝐶 ∈ P))) |
7 | 1, 6 | syl5com 31 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → ((𝐴 +P 𝐵) = (𝐴 +P 𝐶) → (𝐴 ∈ P ∧ 𝐶 ∈ P))) |
8 | ltapr 10068 | . . . . . . . 8 ⊢ (𝐴 ∈ P → (𝐵<P 𝐶 ↔ (𝐴 +P 𝐵)<P (𝐴 +P 𝐶))) | |
9 | ltapr 10068 | . . . . . . . 8 ⊢ (𝐴 ∈ P → (𝐶<P 𝐵 ↔ (𝐴 +P 𝐶)<P (𝐴 +P 𝐵))) | |
10 | 8, 9 | orbi12d 883 | . . . . . . 7 ⊢ (𝐴 ∈ P → ((𝐵<P 𝐶 ∨ 𝐶<P 𝐵) ↔ ((𝐴 +P 𝐵)<P (𝐴 +P 𝐶) ∨ (𝐴 +P 𝐶)<P (𝐴 +P 𝐵)))) |
11 | 10 | notbid 307 | . . . . . 6 ⊢ (𝐴 ∈ P → (¬ (𝐵<P 𝐶 ∨ 𝐶<P 𝐵) ↔ ¬ ((𝐴 +P 𝐵)<P (𝐴 +P 𝐶) ∨ (𝐴 +P 𝐶)<P (𝐴 +P 𝐵)))) |
12 | 11 | ad2antrr 697 | . . . . 5 ⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ P) ∧ (𝐴 ∈ P ∧ 𝐶 ∈ P)) → (¬ (𝐵<P 𝐶 ∨ 𝐶<P 𝐵) ↔ ¬ ((𝐴 +P 𝐵)<P (𝐴 +P 𝐶) ∨ (𝐴 +P 𝐶)<P (𝐴 +P 𝐵)))) |
13 | ltsopr 10055 | . . . . . . 7 ⊢ <P Or P | |
14 | sotrieq 5197 | . . . . . . 7 ⊢ ((<P Or P ∧ (𝐵 ∈ P ∧ 𝐶 ∈ P)) → (𝐵 = 𝐶 ↔ ¬ (𝐵<P 𝐶 ∨ 𝐶<P 𝐵))) | |
15 | 13, 14 | mpan 662 | . . . . . 6 ⊢ ((𝐵 ∈ P ∧ 𝐶 ∈ P) → (𝐵 = 𝐶 ↔ ¬ (𝐵<P 𝐶 ∨ 𝐶<P 𝐵))) |
16 | 15 | ad2ant2l 732 | . . . . 5 ⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ P) ∧ (𝐴 ∈ P ∧ 𝐶 ∈ P)) → (𝐵 = 𝐶 ↔ ¬ (𝐵<P 𝐶 ∨ 𝐶<P 𝐵))) |
17 | addclpr 10041 | . . . . . 6 ⊢ ((𝐴 ∈ P ∧ 𝐶 ∈ P) → (𝐴 +P 𝐶) ∈ P) | |
18 | sotrieq 5197 | . . . . . . 7 ⊢ ((<P Or P ∧ ((𝐴 +P 𝐵) ∈ P ∧ (𝐴 +P 𝐶) ∈ P)) → ((𝐴 +P 𝐵) = (𝐴 +P 𝐶) ↔ ¬ ((𝐴 +P 𝐵)<P (𝐴 +P 𝐶) ∨ (𝐴 +P 𝐶)<P (𝐴 +P 𝐵)))) | |
19 | 13, 18 | mpan 662 | . . . . . 6 ⊢ (((𝐴 +P 𝐵) ∈ P ∧ (𝐴 +P 𝐶) ∈ P) → ((𝐴 +P 𝐵) = (𝐴 +P 𝐶) ↔ ¬ ((𝐴 +P 𝐵)<P (𝐴 +P 𝐶) ∨ (𝐴 +P 𝐶)<P (𝐴 +P 𝐵)))) |
20 | 1, 17, 19 | syl2an 575 | . . . . 5 ⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ P) ∧ (𝐴 ∈ P ∧ 𝐶 ∈ P)) → ((𝐴 +P 𝐵) = (𝐴 +P 𝐶) ↔ ¬ ((𝐴 +P 𝐵)<P (𝐴 +P 𝐶) ∨ (𝐴 +P 𝐶)<P (𝐴 +P 𝐵)))) |
21 | 12, 16, 20 | 3bitr4d 300 | . . . 4 ⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ P) ∧ (𝐴 ∈ P ∧ 𝐶 ∈ P)) → (𝐵 = 𝐶 ↔ (𝐴 +P 𝐵) = (𝐴 +P 𝐶))) |
22 | 21 | exbiri 808 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → ((𝐴 ∈ P ∧ 𝐶 ∈ P) → ((𝐴 +P 𝐵) = (𝐴 +P 𝐶) → 𝐵 = 𝐶))) |
23 | 7, 22 | syld 47 | . 2 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → ((𝐴 +P 𝐵) = (𝐴 +P 𝐶) → ((𝐴 +P 𝐵) = (𝐴 +P 𝐶) → 𝐵 = 𝐶))) |
24 | 23 | pm2.43d 53 | 1 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → ((𝐴 +P 𝐵) = (𝐴 +P 𝐶) → 𝐵 = 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∧ wa 382 ∨ wo 826 = wceq 1630 ∈ wcel 2144 class class class wbr 4784 Or wor 5169 (class class class)co 6792 Pcnp 9882 +P cpp 9884 <P cltp 9886 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-8 2146 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-sep 4912 ax-nul 4920 ax-pow 4971 ax-pr 5034 ax-un 7095 ax-inf2 8701 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3or 1071 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ne 2943 df-ral 3065 df-rex 3066 df-reu 3067 df-rmo 3068 df-rab 3069 df-v 3351 df-sbc 3586 df-csb 3681 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-pss 3737 df-nul 4062 df-if 4224 df-pw 4297 df-sn 4315 df-pr 4317 df-tp 4319 df-op 4321 df-uni 4573 df-int 4610 df-iun 4654 df-br 4785 df-opab 4845 df-mpt 4862 df-tr 4885 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-ov 6795 df-oprab 6796 df-mpt2 6797 df-om 7212 df-1st 7314 df-2nd 7315 df-wrecs 7558 df-recs 7620 df-rdg 7658 df-1o 7712 df-oadd 7716 df-omul 7717 df-er 7895 df-ni 9895 df-pli 9896 df-mi 9897 df-lti 9898 df-plpq 9931 df-mpq 9932 df-ltpq 9933 df-enq 9934 df-nq 9935 df-erq 9936 df-plq 9937 df-mq 9938 df-1nq 9939 df-rq 9940 df-ltnq 9941 df-np 10004 df-plp 10006 df-ltp 10008 |
This theorem is referenced by: enrer 10087 mulcmpblnr 10093 mulgt0sr 10127 |
Copyright terms: Public domain | W3C validator |