MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addasspi Structured version   Visualization version   GIF version

Theorem addasspi 9755
Description: Addition of positive integers is associative. (Contributed by NM, 27-Aug-1995.) (New usage is discouraged.)
Assertion
Ref Expression
addasspi ((𝐴 +N 𝐵) +N 𝐶) = (𝐴 +N (𝐵 +N 𝐶))

Proof of Theorem addasspi
StepHypRef Expression
1 pinn 9738 . . . 4 (𝐴N𝐴 ∈ ω)
2 pinn 9738 . . . 4 (𝐵N𝐵 ∈ ω)
3 pinn 9738 . . . 4 (𝐶N𝐶 ∈ ω)
4 nnaass 7747 . . . 4 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → ((𝐴 +𝑜 𝐵) +𝑜 𝐶) = (𝐴 +𝑜 (𝐵 +𝑜 𝐶)))
51, 2, 3, 4syl3an 1408 . . 3 ((𝐴N𝐵N𝐶N) → ((𝐴 +𝑜 𝐵) +𝑜 𝐶) = (𝐴 +𝑜 (𝐵 +𝑜 𝐶)))
6 addclpi 9752 . . . . . 6 ((𝐴N𝐵N) → (𝐴 +N 𝐵) ∈ N)
7 addpiord 9744 . . . . . 6 (((𝐴 +N 𝐵) ∈ N𝐶N) → ((𝐴 +N 𝐵) +N 𝐶) = ((𝐴 +N 𝐵) +𝑜 𝐶))
86, 7sylan 487 . . . . 5 (((𝐴N𝐵N) ∧ 𝐶N) → ((𝐴 +N 𝐵) +N 𝐶) = ((𝐴 +N 𝐵) +𝑜 𝐶))
9 addpiord 9744 . . . . . . 7 ((𝐴N𝐵N) → (𝐴 +N 𝐵) = (𝐴 +𝑜 𝐵))
109oveq1d 6705 . . . . . 6 ((𝐴N𝐵N) → ((𝐴 +N 𝐵) +𝑜 𝐶) = ((𝐴 +𝑜 𝐵) +𝑜 𝐶))
1110adantr 480 . . . . 5 (((𝐴N𝐵N) ∧ 𝐶N) → ((𝐴 +N 𝐵) +𝑜 𝐶) = ((𝐴 +𝑜 𝐵) +𝑜 𝐶))
128, 11eqtrd 2685 . . . 4 (((𝐴N𝐵N) ∧ 𝐶N) → ((𝐴 +N 𝐵) +N 𝐶) = ((𝐴 +𝑜 𝐵) +𝑜 𝐶))
13123impa 1278 . . 3 ((𝐴N𝐵N𝐶N) → ((𝐴 +N 𝐵) +N 𝐶) = ((𝐴 +𝑜 𝐵) +𝑜 𝐶))
14 addclpi 9752 . . . . . 6 ((𝐵N𝐶N) → (𝐵 +N 𝐶) ∈ N)
15 addpiord 9744 . . . . . 6 ((𝐴N ∧ (𝐵 +N 𝐶) ∈ N) → (𝐴 +N (𝐵 +N 𝐶)) = (𝐴 +𝑜 (𝐵 +N 𝐶)))
1614, 15sylan2 490 . . . . 5 ((𝐴N ∧ (𝐵N𝐶N)) → (𝐴 +N (𝐵 +N 𝐶)) = (𝐴 +𝑜 (𝐵 +N 𝐶)))
17 addpiord 9744 . . . . . . 7 ((𝐵N𝐶N) → (𝐵 +N 𝐶) = (𝐵 +𝑜 𝐶))
1817oveq2d 6706 . . . . . 6 ((𝐵N𝐶N) → (𝐴 +𝑜 (𝐵 +N 𝐶)) = (𝐴 +𝑜 (𝐵 +𝑜 𝐶)))
1918adantl 481 . . . . 5 ((𝐴N ∧ (𝐵N𝐶N)) → (𝐴 +𝑜 (𝐵 +N 𝐶)) = (𝐴 +𝑜 (𝐵 +𝑜 𝐶)))
2016, 19eqtrd 2685 . . . 4 ((𝐴N ∧ (𝐵N𝐶N)) → (𝐴 +N (𝐵 +N 𝐶)) = (𝐴 +𝑜 (𝐵 +𝑜 𝐶)))
21203impb 1279 . . 3 ((𝐴N𝐵N𝐶N) → (𝐴 +N (𝐵 +N 𝐶)) = (𝐴 +𝑜 (𝐵 +𝑜 𝐶)))
225, 13, 213eqtr4d 2695 . 2 ((𝐴N𝐵N𝐶N) → ((𝐴 +N 𝐵) +N 𝐶) = (𝐴 +N (𝐵 +N 𝐶)))
23 dmaddpi 9750 . . 3 dom +N = (N × N)
24 0npi 9742 . . 3 ¬ ∅ ∈ N
2523, 24ndmovass 6864 . 2 (¬ (𝐴N𝐵N𝐶N) → ((𝐴 +N 𝐵) +N 𝐶) = (𝐴 +N (𝐵 +N 𝐶)))
2622, 25pm2.61i 176 1 ((𝐴 +N 𝐵) +N 𝐶) = (𝐴 +N (𝐵 +N 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wa 383  w3a 1054   = wceq 1523  wcel 2030  (class class class)co 6690  ωcom 7107   +𝑜 coa 7602  Ncnpi 9704   +N cpli 9705
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-oadd 7609  df-ni 9732  df-pli 9733
This theorem is referenced by:  addassnq  9818
  Copyright terms: Public domain W3C validator