![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > addass | Structured version Visualization version GIF version |
Description: Alias for ax-addass 10039, for naming consistency with addassi 10086. (Contributed by NM, 10-Mar-2008.) |
Ref | Expression |
---|---|
addass | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-addass 10039 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1054 = wceq 1523 ∈ wcel 2030 (class class class)co 6690 ℂcc 9972 + caddc 9977 |
This theorem was proved from axioms: ax-addass 10039 |
This theorem is referenced by: addassi 10086 addassd 10100 00id 10249 addid2 10257 add12 10291 add32 10292 add32r 10293 add4 10294 nnaddcl 11080 uzaddcl 11782 xaddass 12117 fztp 12435 seradd 12883 expadd 12942 bernneq 13030 faclbnd6 13126 hashgadd 13204 swrds2 13731 clim2ser 14429 clim2ser2 14430 summolem3 14489 isumsplit 14616 fsumcube 14835 odd2np1lem 15111 prmlem0 15859 cnaddablx 18317 cnaddabl 18318 zaddablx 18321 cncrng 19815 cnlmod 22986 pjthlem1 23254 ptolemy 24293 bcp1ctr 25049 cnaddabloOLD 27564 pjhthlem1 28378 dnibndlem5 32597 mblfinlem2 33577 mogoldbblem 41954 nnsgrp 42142 2zrngasgrp 42265 |
Copyright terms: Public domain | W3C validator |