![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > adantlrr | Structured version Visualization version GIF version |
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 26-Dec-2004.) (Proof shortened by Wolf Lammen, 4-Dec-2012.) |
Ref | Expression |
---|---|
adantl2.1 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
adantlrr | ⊢ (((𝜑 ∧ (𝜓 ∧ 𝜏)) ∧ 𝜒) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 472 | . 2 ⊢ ((𝜓 ∧ 𝜏) → 𝜓) | |
2 | adantl2.1 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) | |
3 | 1, 2 | sylanl2 684 | 1 ⊢ (((𝜑 ∧ (𝜓 ∧ 𝜏)) ∧ 𝜒) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 385 |
This theorem is referenced by: disjxiun 4681 oelim 7659 odi 7704 marypha1lem 8380 dfac12lem2 9004 infunsdom 9074 isf34lem4 9237 distrlem1pr 9885 lcmgcdlem 15366 lcmdvds 15368 drsdirfi 16985 isacs3lem 17213 conjnmzb 17742 psgndif 19996 frlmsslsp 20183 metss2lem 22363 nghmcn 22596 bndth 22804 itg2monolem1 23562 dvmptfsum 23783 ply1divex 23941 itgulm 24207 rpvmasumlem 25221 dchrmusum2 25228 dchrisum0lem2 25252 dchrisum0lem3 25253 mulog2sumlem2 25269 pntibndlem3 25326 wwlksubclwwlk 27023 blocni 27788 superpos 29341 chirredlem2 29378 eulerpartlemgvv 30566 ballotlemfc0 30682 ballotlemfcc 30683 bj-finsumval0 33277 fin2solem 33525 matunitlindflem1 33535 poimirlem28 33567 heicant 33574 ftc1anclem6 33620 ftc1anc 33623 fdc 33671 incsequz 33674 ismtyres 33737 isdrngo2 33887 rngohomco 33903 keridl 33961 linepsubN 35356 pmapsub 35372 mzpcompact2lem 37631 pellex 37716 monotuz 37823 unxpwdom3 37982 dssmapnvod 38631 radcnvrat 38830 fprodexp 40144 fprodabs2 40145 climxrrelem 40299 dvnprodlem1 40479 stoweidlem34 40569 fourierdlem42 40684 elaa2 40769 sge0iunmptlemfi 40948 aacllem 42875 |
Copyright terms: Public domain | W3C validator |