![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > adantlrl | Structured version Visualization version GIF version |
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 26-Dec-2004.) (Proof shortened by Wolf Lammen, 4-Dec-2012.) |
Ref | Expression |
---|---|
adantl2.1 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
adantlrl | ⊢ (((𝜑 ∧ (𝜏 ∧ 𝜓)) ∧ 𝜒) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 471 | . 2 ⊢ ((𝜏 ∧ 𝜓) → 𝜓) | |
2 | adantl2.1 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) | |
3 | 1, 2 | sylanl2 660 | 1 ⊢ (((𝜑 ∧ (𝜏 ∧ 𝜓)) ∧ 𝜒) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 383 |
This theorem is referenced by: omlimcl 7812 odi 7813 oelim2 7829 mapxpen 8282 unwdomg 8645 dfac12lem2 9168 infunsdom 9238 fin1a2s 9438 frlmup1 20354 fbasrn 21908 lmmbr 23275 grporcan 27712 unoplin 29119 hmoplin 29141 superpos 29553 subfacp1lem5 31504 matunitlindflem1 33738 poimirlem4 33746 itg2addnclem 33793 ftc1anclem6 33822 fdc 33873 ismtyres 33939 isdrngo2 34089 rngohomco 34105 rngoisocnv 34112 dssmapnvod 38840 climxrrelem 40499 dvdsn1add 40672 dvnprodlem1 40679 stoweidlem27 40761 fourierdlem97 40937 qndenserrnbllem 41031 sge0iunmptlemfi 41147 |
Copyright terms: Public domain | W3C validator |