![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > adantl3r | Structured version Visualization version GIF version |
Description: Deduction adding 1 conjunct to antecedent. (Contributed by Alan Sare, 17-Oct-2017.) |
Ref | Expression |
---|---|
adantl3r.1 | ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) |
Ref | Expression |
---|---|
adantl3r | ⊢ (((((𝜑 ∧ 𝜂) ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | adantl3r.1 | . . . 4 ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) | |
2 | 1 | ex 449 | . . 3 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → (𝜃 → 𝜏)) |
3 | 2 | adantllr 757 | . 2 ⊢ ((((𝜑 ∧ 𝜂) ∧ 𝜓) ∧ 𝜒) → (𝜃 → 𝜏)) |
4 | 3 | imp 444 | 1 ⊢ (((((𝜑 ∧ 𝜂) ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 385 |
This theorem is referenced by: adantl4r 804 ad5ant1345 1473 iscgrglt 25608 legov 25679 dfcgra2 25920 omssubadd 30671 circlemeth 31027 poimirlem29 33751 adantlllr 39698 supxrge 40052 xrralrecnnle 40100 rexabslelem 40143 limclner 40386 xlimmnfvlem2 40562 xlimmnfv 40563 xlimpnfvlem2 40566 xlimpnfv 40567 climxlim2lem 40574 icccncfext 40603 fourierdlem64 40890 fourierdlem73 40899 etransclem35 40989 sge0tsms 41100 hoicvr 41268 hspmbllem2 41347 smflimlem2 41486 smflimlem4 41488 |
Copyright terms: Public domain | W3C validator |