MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ad7antrOLD Structured version   Visualization version   GIF version

Theorem ad7antrOLD 725
Description: Obsolete version of ad7antr 724 as of 5-Apr-2022. (Contributed by Mario Carneiro, 4-Jan-2017.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
ad2ant.1 (𝜑𝜓)
Assertion
Ref Expression
ad7antrOLD ((((((((𝜑𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) ∧ 𝜌) → 𝜓)

Proof of Theorem ad7antrOLD
StepHypRef Expression
1 ad2ant.1 . . 3 (𝜑𝜓)
21ad6antr 720 . 2 (((((((𝜑𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) → 𝜓)
32adantr 466 1 ((((((((𝜑𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) ∧ 𝜌) → 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 197  df-an 383
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator