MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ad5ant1345 Structured version   Visualization version   GIF version

Theorem ad5ant1345 1472
Description: Obsolete as of 17-May-2022. Use adantl3r 744 instead. (Contributed by Alan Sare, 17-Oct-2017.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
ad5ant1345.1 ((((𝜑𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏)
Assertion
Ref Expression
ad5ant1345 (((((𝜑𝜂) ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏)

Proof of Theorem ad5ant1345
StepHypRef Expression
1 ad5ant1345.1 . 2 ((((𝜑𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏)
21adantl3r 744 1 (((((𝜑𝜂) ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 197  df-an 383
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator