MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ad4ant14OLD Structured version   Visualization version   GIF version

Theorem ad4ant14OLD 1210
Description: Obsolete version of ad4ant14 1209 as of 14-Apr-2022. (Contributed by Alan Sare, 17-Oct-2017.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
ad4ant2.1 ((𝜑𝜓) → 𝜒)
Assertion
Ref Expression
ad4ant14OLD ((((𝜑𝜃) ∧ 𝜏) ∧ 𝜓) → 𝜒)

Proof of Theorem ad4ant14OLD
StepHypRef Expression
1 ad4ant2.1 . . . 4 ((𝜑𝜓) → 𝜒)
21ex 449 . . 3 (𝜑 → (𝜓𝜒))
322a1d 26 . 2 (𝜑 → (𝜃 → (𝜏 → (𝜓𝜒))))
43imp41 620 1 ((((𝜑𝜃) ∧ 𝜏) ∧ 𝜓) → 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 197  df-an 385
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator