![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ad4ant13 | Structured version Visualization version GIF version |
Description: Deduction adding conjuncts to antecedent. (Contributed by Alan Sare, 17-Oct-2017.) (Proof shortened by Wolf Lammen, 14-Apr-2022.) |
Ref | Expression |
---|---|
ad4ant2.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
Ref | Expression |
---|---|
ad4ant13 | ⊢ ((((𝜑 ∧ 𝜃) ∧ 𝜓) ∧ 𝜏) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ad4ant2.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
2 | 1 | adantlr 753 | . 2 ⊢ (((𝜑 ∧ 𝜃) ∧ 𝜓) → 𝜒) |
3 | 2 | adantr 472 | 1 ⊢ ((((𝜑 ∧ 𝜃) ∧ 𝜓) ∧ 𝜏) → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 385 |
This theorem is referenced by: ad5ant14 1218 ad5ant24 1224 fntpb 6638 dvdslcmf 15566 poslubmo 17367 posglbmo 17368 trust 22254 metust 22584 umgrres1lem 26422 upgrres1 26425 friendshipgt3 27587 repr0 31019 breprexplemc 31040 hgt750lemb 31064 matunitlindflem1 33736 mapss2 39914 supxrge 40070 xrlexaddrp 40084 infxr 40099 infleinf 40104 unb2ltle 40158 supminfxr 40210 limsuppnfdlem 40454 limsupub 40457 limsuppnflem 40463 climinf3 40469 limsupmnflem 40473 climxrre 40503 liminfvalxr 40536 sge0isum 41165 sge0gtfsumgt 41181 sge0seq 41184 nnfoctbdjlem 41193 meaiuninc3v 41222 omeiunltfirp 41257 hspdifhsp 41354 hspmbllem2 41365 pimdecfgtioo 41451 pimincfltioo 41452 preimageiingt 41454 preimaleiinlt 41455 smfid 41485 proththd 42059 |
Copyright terms: Public domain | W3C validator |