![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ad2ant2lr | Structured version Visualization version GIF version |
Description: Deduction adding two conjuncts to antecedent. (Contributed by NM, 23-Nov-2007.) |
Ref | Expression |
---|---|
ad2ant2.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
Ref | Expression |
---|---|
ad2ant2lr | ⊢ (((𝜃 ∧ 𝜑) ∧ (𝜓 ∧ 𝜏)) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ad2ant2.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
2 | 1 | adantrr 753 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜏)) → 𝜒) |
3 | 2 | adantll 750 | 1 ⊢ (((𝜃 ∧ 𝜑) ∧ (𝜓 ∧ 𝜏)) → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 385 |
This theorem is referenced by: reusv2lem2OLD 4900 mpteqb 6338 omxpenlem 8102 fineqvlem 8215 marypha1lem 8380 fin23lem26 9185 axdc3lem4 9313 mulcmpblnr 9930 ltsrpr 9936 sub4 10364 muladd 10500 ltleadd 10549 divdivdiv 10764 divadddiv 10778 ltmul12a 10917 lt2mul2div 10939 xlemul1a 12156 fzrev 12441 facndiv 13115 fsumconst 14566 fprodconst 14752 isprm5 15466 acsfn2 16371 ghmeql 17730 subgdmdprd 18479 lssvsubcl 18992 lssvacl 19002 ocvin 20066 lindfmm 20214 scmatghm 20387 scmatmhm 20388 slesolinv 20534 slesolinvbi 20535 slesolex 20536 pm2mpf1lem 20647 pm2mpcoe1 20653 reftr 21365 alexsubALTlem2 21899 alexsubALTlem3 21900 blbas 22282 nmoco 22588 cncfmet 22758 cmetcaulem 23132 mbflimsup 23478 ulmdvlem3 24201 ptolemy 24293 3wlkdlem6 27143 vdn0conngrumgrv2 27174 frgrncvvdeqlem8 27286 frgrwopreglem5ALT 27302 grpoideu 27491 ipblnfi 27839 htthlem 27902 hvaddsub4 28063 bralnfn 28935 hmops 29007 hmopm 29008 adjadd 29080 opsqrlem1 29127 atomli 29369 chirredlem2 29378 atcvat3i 29383 mdsymlem5 29394 cdj1i 29420 derangenlem 31279 elmrsubrn 31543 dfon2lem6 31817 poseq 31878 sltsolem1 31951 matunitlindflem1 33535 mblfinlem1 33576 prdsbnd 33722 heibor1lem 33738 hl2at 35009 congneg 37853 jm2.26 37886 stoweidlem34 40569 fmtnofac2lem 41805 lindslinindsimp2 42577 ltsubaddb 42629 ltsubadd2b 42631 aacllem 42875 |
Copyright terms: Public domain | W3C validator |